Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Псевдоскалярное произведение

Из Википедии — свободной энциклопедии

Magnitude cross product.png

Псевдоскалярным[1] или косым произведением векторов и на плоскости называется число

где  — угол вращения (против часовой стрелки) от к . Если хотя бы один из векторов и нулевой, то полагают . Геометрически псевдоскалярное произведение векторов представляет собой ориентированную площадь параллелограмма, натянутого на эти вектора. С её помощью удобно работать с площадями многоугольников, выражать условия коллинеарности векторов и находить углы между ними.

Псевдоскалярное произведение существует только для 2-мерных векторов, его аналогом в трехмерном пространстве является тройное скалярное произведение.

Свойства

  • Линейность: Здесь ,  — произвольные вещественные числа.
  • Антикоммутативность: .
  • является псевдоскаляром, то есть инвариантом при всех невырожденных изометриях, не включающих отражений.
  • Псевдоскалярное произведение  — это ориентированная площадь параллелограмма, натянутого на векторы и .
    • Абсолютная величина псевдоскалярного произведения  — это площадь такого параллелограмма.
    • Ориентированная площадь треугольника выражается формулой
    а его площадь, следовательно, равна модулю этой величины.
  • Если рассматривать плоскость в трёхмерном пространстве, то
где «» и «» соответственно — векторное и скалярное произведение, а  — единичный вектор нормали к плоскости. Знак плюс берется в случае, если правый базис на плоскости, дополненный вектором , образует также правый базис; в противном случае минус.
  •  — необходимое и достаточное условие коллинеарности ненулевых векторов на плоскости. Нулевой вектор для удобства работы с более употребительным скалярным произведением обычно считают ортогональным любому другому вектору, хотя это является произвольным соглашением.
  • Из линейности и антикоммутативности следует, что если на плоскости задан ортонормированный базис и два вектора, имеющих в нём координаты то их псевдоскалярное произведение равно определителю

См. также

Примечания

  1. Прасолов В. В., Задачи по планиметрии. Архивная копия от 16 ноября 2011 на Wayback Machine — 4-е изд., дополненное — М.: МЦНМО, 2001. — 584 с. ; ISBN 5-900916-82-0.
Эта страница в последний раз была отредактирована 15 апреля 2022 в 22:13.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).