Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Псевдопростое число — натуральное число, обладающее некоторыми свойствами простых чисел, являясь тем не менее составным. В зависимости от рассматриваемых свойств существует несколько различных типов псевдопростых чисел.

Существование псевдопростых является препятствием для тестов простоты, пытающихся использовать те или иные свойства простых чисел для определения простоты данного числа.

Псевдопростые Ферма

Составное число n называется псевдопростым Ферма по основанию a, если a и n взаимно просты и .[1]

Псевдопростые Ферма по основанию 2 образуют последовательность:

341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, … (последовательность A001567 в OEIS)

а по основанию 3 — последовательность:

91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, … (последовательность A005935 в OEIS)

Число, являющееся псевдопростым Ферма по каждому взаимно простому с ним основанию, называется числом Кармайкла.

Псевдопростые Эйлера — Якоби

Нечётное составное число n называется псевдопростым Эйлера — Якоби по основанию a, если оно удовлетворяет сравнению[2]

где  — символ Якоби. Так как из этого сравнения следует, что то всякое псевдопростое Эйлера — Якоби также является псевдопростым Ферма (по тому же основанию).

Псевдопростые Эйлера — Якоби по основанию 2 образуют последовательность:

561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, … (последовательность A047713 в OEIS)

а по основанию 3 — последовательность:

121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585, 12403, 15457, 15841, … (последовательность A048950 в OEIS)

Псевдопростые Фибоначчи

Основная статья: Псевдопростое число Фибоначчи

Псевдопростые Люка

Основная статья: Псевдопростое число Люка

Псевдопростые Перрина

Составное число q называется псевдопростым Перрина, если оно делит qчисло Перрина P(q), задаваемое рекуррентным соотношением:

P(0) = 3, P(1) = 0, P(2) = 2,

и

P(n) = P(n − 2) + P(n − 3) for n > 2.

Псевдопростые Фробениуса

Псевдопростое число, прошедшее трёхшаговый тест принадлежности к возможно простым числам, разработанный Джоном Грантамом (Jon Grantham) в 1996-м году.[3][4]

Псевдопростые Каталана

Нечётное составное число n, удовлетворяющее сравнению

где Cm — m-ое число Каталана. Сравнение верно для любого нечётного простого числа n.

Известно только три псевдопростых чисел Каталана: 5907, 1194649, и 12327121 (последовательность A163209 в OEIS), причём два последних из них являются квадратами простых чисел Вифериха. В общем случае, если p — простое число Вифериха, то p2 — псевдопростое Каталана.

См. также

Примечания

  1. Weisstein, Eric W. Fermat Pseudoprime (англ.) на сайте Wolfram MathWorld.
  2. Weisstein, Eric W. Euler-Jacobi Pseudoprime (англ.) на сайте Wolfram MathWorld.
  3. Weisstein, Eric W. Frobenius pseudoprime (англ.) на сайте Wolfram MathWorld.
  4. Jon Grantham. Frobenius pseudoprimes (англ.) // Mathematics of Computation  (англ.) : journal. — 2001. — Vol. 70, no. 234. — P. 873—891. — doi:10.1090/S0025-5718-00-01197-2.

Ссылки

Эта страница в последний раз была отредактирована 16 июля 2019 в 01:23.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).