Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Фридрих Бергиус

Процесс Бергиуса (также процесс Бергиуса-Пьера) — способ производства жидких углеводородов, предназначенных для использования в качестве синтетического топлива путем гидрирования углерода при высоких температурe и давлении (Прямое сжижение угля). Другое сырье, такое как каменноугольная смола и битум, также может быть использовано в этом процессе. Впервые он был разработан Фридрихом Бергиусом в 1913 году, который позже получил Нобелевскую премию по химии (в 1931 году) совместно с Карлом Бошем за их общие заслуги в области открытия и разработки химических процессов высокого давления.[1]

История

В 1913 году Фридрих Бергиус разработал способ получения<span title="Статья «Гидрогенизация твёрдого топлива» в русском разделе отсутствует">ru</span>uk моторных жидких топлив путём насыщения водородом смеси, состоящей из измельчённого угля и смолообразных отходов производства кокса и генераторного газа под давлением выше 20 МН/м² (200 кгс/см2, 200 атм.) и температуре порядка 500 °C. Патент был приобретён у Бергиуса концерном «И. Г. Фарбениндустри», и применялся с использованием катализаторов. По этому способу нацистская Германия во время 2-й мировой войны получала значительное количество бензина.

Процесс

Если в качестве сырья для процесса использовался уголь или лигнит, его тонко измельчали ​​и сушили на первом этапе процесса. Сырье, добавки и катализаторы смешивают в суспензии с использованием густого масла, которое извлекают из процесса. Типичными добавками и катализаторами были такие вещества, как олово, хлор, оксид железа, сульфид натрия, коксовая пыль, сульфат железа и триоксид молибдена. Какие добавки и катализаторы использовались, зависело от сырья и рабочего давления на установке. Приготовленную суспензию перекачивали в жидкую фазу процесса.

Многочисленные катализаторы были разработаны в течение многих лет, в том числе сульфидов вольфрама или молибдена, олеиновая кислота из олова или никеля, и другиe. Альтернативно, возможно, что сульфиды железа, присутствующие в угле, имеют достаточную каталитическую активность для процесса, который был исходным процессом Бергиуса.

Блок-схема процесса Бергиуса[2]

Производство водорода

Схематический вид реактора Винклера для получения водорода.

Производство водорода, необходимого для процесса Бергиуса, осуществлялось путем газификации углерода в реакторе с кипящим слоем Винклера. Порошковый углерод (уголь) вдувается в реактор вместе с кислородом и водяным паром. В ряде экзотермических и эндотермических реакций углерод реагирует с кислородом и водой с образованием диоксида углерода и водорода. Сжигание углерода с кислородом образует окись углерода (реакция 1), которая дала энергию для эндотермического образования газообразного водорода (реакция 2). Угарный газ вступает в обратимую реакцию с углеродом и углекислым газом (реакция 3). В обратимой реакции монооксид углерода может реагировать с водой с образованием диоксида углерода и водорода (реакция 4).

Жидкая фаза

Диаграмма функции в жидкой фазе процесса Бергиуса

В жидкой фазе специальный поршневой насос увеличивал давление суспензии до рабочего давления в реакторе, обычно от 200 до 700 бар. Суспензию смешивали с водородом и газом полученным из самого процесса. Смесь пропускали через серию из двух-четырех теплообменников, где синтетическая сырая нефть из конечной стадии процесса нагревала смесь в котле, и, наконец, смесь нагревали до температуры процесса то есть между 460 и 485 ° С. Нагретую смесь подавали в серию из трех или четырех химических реакторов, где длинные углеводородные цепи сырья разделяются на более короткие цепи путем гидрирования. В результате получается синтетическая сырая нефть, содержащая горючий газ, водяной газ, дизельное топливо и вакуумный газойль . Когда реакция в реакторе является экзотермической, распределение температуры в реакторе контролировали путем закачки рециркулируемого газа. После процесса в реакторе остатки гидрирования, непрореагировавшее сырье, твердые частицы, кокс и тяжелый вакуумный газойль были отделены от газообразной синтетической сырой нефти. Остатки гидрирования были направлены в процесс переработки. Газообразную синтетическую сырую нефть сначала охлаждали в теплообменниках, которые предварительно нагревали технологическую смесь, а затем в водоохладителях. В результате образуются тяжелые масла, средние масла, бензин и газ. Общая реакция может быть обобщена следующим образом:

Непосредственный продукт реактора должен быть стабилизирован путем пропускания его через каталитический процесс крекинга (гидрокрекинг). Часть оставшегося газа должна быть перекачена обратно в процесс в качестве рециркулируемого газа. Жидкая синтетическая сырая нефть имела высокий уровень нафтенов и ароматических соединений, низкий уровень парафинов и очень низкий уровень олефинов . После рафинирования различные фракции могут быть могут быть переданы на дальнейшую обработку ( крекинг, риформинг) и преобразованы в синтетическое топливо с желаемыми свойствами.

При прохождении через такой процесс, как платформинг, большинство нафтенов превращаются в ароматические углеводороды, и восстановленный водород рециркулирует в процессе. В целом, приблизительно 97% поступающего углерода, поступающего непосредственно в процесс, можно преобразовать в синтетическое топливо. Однако любое количество углерода, используемого в производстве водорода, будет потеряно в виде диоксида углерода, что приведет к снижению общей эффективности использования углерода в процессе.

Существует остаток нереакционноспособных смоляных соединений, смешанных с углем и золой. Чтобы свести к минимуму потери углерода в остаточном потоке, необходимо иметь низкую подачу золы в процесс. Обычно уголь должен иметь зольность  <10%. Водород, необходимый для процесса, также может быть получен из остатка путем паровой конверсии. Типичная потребность в водороде составляет ~ 8 кг водорода на тонну сухого малозольного угля. Продукт имеет три уровня: тяжелая нефть, средняя нефть, бензин. Средняя нефть гидрируется, чтобы получить больше бензина, а тяжелая нефть снова смешивается с углем, и процесс начинается снова.

Процесс переработки

Остатки процесса гидрирования охлаждали до температуры ниже 200 ° С в водяном холодильнике. Затем давление снижали и остатки смешивали с дизельным топливом, полученным после рафинирования, чтобы перекачать смесь в центрифугу . Из центрифуги получали густое масло с содержанием твердых веществ 2-12%. Густое масло перекачивали обратно в процесс приготовления, где оно использовалось для смешивания сырья в суспензию. Отходы от центрифугирования дожигали до кокса во вращающихся печах.

Использование

Во времена Третьего рейха в Германии был построен ряд предприятий по производству энергоносителей из угля, залежи которого в больших количествах находятся на территории страны. В основном производство базировалось на процессе Бергиуса, (для процесса Фишера—Тропша были выделены менее значительные мощности). До конца Второй мировой войны было реализовано в общем мощностей для производства до 4,275 миллионов тонн в год с помощью первого и до 1,55 млн т в год с помощью последнего процесса. Обе отрасли оказались неконкурентоспособными по сравнению с нефтедобывающей и были остановлены по окончании войны.

См. также

Примечания

  1. Friedrich Bergius - Facts. The Nobel Prize in Chemistry 1931 Carl Bosch, Friedrich Bergius (нем.). Nobelprize.org (16 мая 2014). Дата обращения: 24 июня 2019. Архивировано из оригинала 16 мая 2014 года.
  2. patent:US1592772. Дата обращения: 5 ноября 2019. Архивировано 5 ноября 2019 года.
Эта страница в последний раз была отредактирована 18 июля 2023 в 11:57.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).