Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Проектор (математика)

Из Википедии — свободной энциклопедии

На этом рисунке преобразование является ортогональной проекцией на прямую .

В линейной алгебре и функциональном анализе линейный оператор , действующий в линейном пространстве, называется прое́ктором (а также опера́тором проеци́рования и проекцио́нным опера́тором), если . Такой оператор называют идемпотентным.

Несмотря на свою абстрактность, это определение обобщает идею построения геометрической проекции.

В качестве определения можно использовать следующее свойство проектора: линейный оператор является проектором тогда и только тогда, когда существуют такие подпространства и пространства , что раскладывается в их прямую сумму, и при этом для любой пары элементов имеем . Подпространства и — соответственно образ и ядро проектора , и обозначаются и .

В общем случае, разложение линейного пространства в прямую сумму не единственно. Поэтому, для подпространства пространства , вообще говоря, существует много проекторов, образ или ядро которых совпадает с .

Свойства проекционных операторов

Комбинации проекторов

Пусть и — проекторы, заданные на векторном пространстве , и проецирующие на подпространства и соответственно. Тогда

  • — проектор на подпространстве , в том и только том случае, когда .
  • является проектором тогда и только тогда, когда . проецирует на подпространство .
  • Если , то  — проектор на подпространство .

Примеры

Действует на точки она следующим образом:

Преобразование T является косоугольной проекцией вдоль k на прямую m. U=m и V=k.

Легко показать, что это действительно проектор:

Проекция, задаваемая , ортогональна, тогда и только тогда, когда .

Ортогональный проектор

Если пространство гильбертово, то есть обладает скалярным произведением (а значит и понятием ортогональности), то можно ввести понятие ортогонального проектора.

Ортогональный проектор — это частный случай проектора, когда выше упомянутые подпространства и ортогональны друг другу, иными словами, когда , или , или . В этом случае проекция элемента является ближайшим к нему элементом пространства .

Литература

  • Треногин В. А. Функциональный анализ. — М.: Наука, 1980. — 495 с.
  • Халмош П. Конечномерные векторные пространства = Finite-dimensional vector spaces. — М.: Физматгиз, 1963. — 264 с.
Эта страница в последний раз была отредактирована 24 сентября 2023 в 14:58.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).