Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Проективное пространство

Из Википедии — свободной энциклопедии

Проекти́вное простра́нство над полем  — пространство, состоящее из прямых (одномерных подпространств) некоторого линейного пространства над данным полем. Прямые пространства называются точками проективного пространства. Это определение поддаётся обобщению на произвольное тело В случае, когда поле или , соответствующее проективное пространство называется вещественным или комплексным соответственно.

Если имеет размерность , то размерностью проективного пространства называется число , а само проективное пространство обозначается и называется ассоциированным с (чтобы это указать, принято обозначение ).

Переход от векторного пространства размерности к соответствующему проективному пространству называется проективизацией пространства .

Точки можно описывать с помощью однородных координат.

Определение как факторпространства

Отождествляя точки , где отлично от нуля, мы получим фактормножество (по отношению эквивалентности )

.

Точки проективного пространства обозначаются как , где числа называются однородными координатами[1]. Например, и обозначают одну и ту же точку проективного пространства.

Аксиоматическое определение

Проективное пространство может быть также определено системой аксиом типа гильбертовской. В этом случае проективное пространство определяется как система, состоящая из множества точек , множества прямых и отношения инцидентности , которое обычно выражается словами «точка лежит на прямой», удовлетворяющая следующим аксиомам:

  • лля любых двух различных точек существует единственная прямая, инцидентная обеим точкам;
  • каждая прямая инцидентна не менее чем трём точкам;
  • если прямые и пересекаются (имеют общую инцидентную точку), точки и лежат на прямой , а точки и  — на прямой , то прямые и пересекаются.

Подпространством проективного пространства называется подмножество множества , такое что для любых из этого подмножества все точки прямой принадлежат . Размерностью проективного пространства называется наибольшее число , такое что существует строго возрастающая цепочка подпространств вида

.

Классификация

  • Размерность 0: пространство состоит из единственной точки.
  • Размерность 1 (проективная прямая): произвольное непустое множество точек и единственная прямая, на которой лежат все эти точки.
  • Размерность 2 (проективная плоскость): в этом случае классификация является более сложной. Все плоскости вида для некоторого тела удовлетворяют аксиоме Дезарга, однако существуют также недезарговы плоскости.
  • Большие размерности: согласно теореме Веблена — Юнга,[2] любое проективное пространство размерности более двух может быть получено как проективизация модуля над некоторым телом.

Связанные определения и свойства

  • Пусть есть гиперплоскость в линейном пространстве . Проективное пространство называется проективной гиперплоскостью в .
  • На дополнении проективной гиперплоскости существует естественная структура аффинного пространства.
  • Обратно, взяв за основу аффинное пространство , можно получить проективное пространство как аффинное, к которому добавлены т. н. бесконечно удалённые точки. Первоначально проективное пространство и было введено таким образом.
  • Пусть и ― два проективных подпространства. Множество называется проективной оболочкой множества и обозначается .[3]

Тавтологическое расслоение

Тавтологическим расслоением называется векторное расслоение, пространством расслоения которого является подмножество прямого произведения

,

а слоем — вещественная прямая . Каноническая проекция отображает прямую, проходящую через точки , в соответствующую точку проективного пространства. При это расслоение не является тривиальным. При пространством расслоения является лента Мёбиуса.

Примечания

  1. Кострикин А. И., Манин Ю. И. Линейная алгебра и геометрия, ч. 3, пар. 6, М.: Наука 1986
  2. Veblen, Oswald; Young, John Wesley. Projective geometry. Vols. 1, 2, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1965 (Reprint of 1910 edition)
  3. Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, гл. 9, пар. 1, — Физматлит, Москва, 2009.

Литература

  • Артин Э. Геометрическая алгебра — М.: Наука, 1969.
  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. Методы и приложения. — М.: Наука, 1979.
  • Кострикин А. И., Манин Ю. И. Линейная алгебра и геометрия — М.: Наука 1986.
  • Хартсхорн Р. Основы проективной геометрии — М.: Мир, 1970.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.
  • Александров А. Д., Нецветаев Н. Ю. Геометрия. — Наука, Москва, 1990.
  • Бэр Р. Линейная алгебра и проективная геометрия. — УРСС, Москва, 2004.
  • Фиников С. П. Аналитическая геометрия: Курс лекций. — УРСС, Москва, 2008.
Эта страница в последний раз была отредактирована 7 апреля 2024 в 15:17.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).