Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Множество однородных призм
Шестиугольная призма

Шестиугольная призма
Тип Однородный многогранник
Свойства вершинно транзитивный
выпуклый многогранник
Комбинаторика
Элементы
3n ребра
2n вершины
Грани Всего - 2+n
2{n}
n {4}
Конфигурация вершины 4.4.n
Двойственный многогранник Бипирамида
Классификация
Символ Шлефли {n}×{} or t{2, n}
Диаграмма Дынкина node_12node_1nnode
Группа симметрии D<sub><i>n</i>h</sub>[en], [n,2], (*n22), порядок 4n
Логотип Викисклада Медиафайлы на Викискладе

При́зма (-угольная) (лат. prisma от др.-греч. πρίσμα «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками (-угольниками), лежащими в параллельных плоскостях, а остальные граней — параллелограммы, имеющие общие стороны с этими многоугольниками.

Эти параллелограммы называются боковыми гранями призмы, а оставшиеся два многоугольника называются её основаниями.

Многоугольник, лежащий в основании, определяет название призмы: треугольник — треугольная призма, четырёхугольник — четырёхугольная; пятиугольник — пятиугольная (пентапризма) и т. д.

Призма является частным случаем цилиндра в общем смысле (некругового).

Элементы призмы

Название Определение Обозначения на чертеже Чертеж
Основания Две грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных друг другу плоскостях. ,
Призма
Призма
Боковые грани Все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. , , , ,
Боковая поверхность Объединение боковых граней.
Полная поверхность Объединение оснований и боковой поверхности.
Боковые рёбра Общие стороны боковых граней. , , , ,
Высота Отрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям.
Диагональ Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Диагональная плоскость Плоскость, проходящая через боковое ребро призмы и диагональ основания.
Диагональное сечение Пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат.
Перпендикулярное (ортогональное) сечение Пересечение призмы и плоскости, перпендикулярной её боковому ребру.

Свойства призмы

  • Основания призмы являются равными многоугольниками.
  • Боковые грани призмы являются параллелограммами.
  • Боковые рёбра призмы параллельны и равны.
  • Объём призмы равен произведению её высоты на площадь основания:
  • Объём призмы с правильным n-угольным основанием равен
(здесь s — длина стороны многоугольника).
  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
  • Площадь боковой поверхности произвольной призмы , где  — периметр перпендикулярного сечения,  — длина бокового ребра.
  • Площадь боковой поверхности прямой призмы , где  — периметр основания призмы,  — высота призмы.
  • Площадь боковой поверхности прямой призмы с правильным -угольным основанием равна
  • Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
  • Перпендикулярное сечение перпендикулярно ко всем боковым граням.
  • Двойственным многогранником прямой призмы является бипирамида.

Виды призм

Призма, основанием которой является параллелограмм, называется параллелепипедом.

Прямая призма — это призма, у которой боковые рёбра перпендикулярны плоскости основания, откуда следует, что все боковые грани являются прямоугольниками[1].

Прямая прямоугольная призма называется также прямоугольным параллелепипедом. Символ Шлефли такой призмы — { }×{ }×{ }.

Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.

Правильная призма, боковые грани которой являются квадратами (высота которой равна стороне основания), является полуправильным многогранником. Символ Шлефли такой призмы — t{2,p}.
Усечённая треугольная призма
Прямые призмы с правильными основаниями и одинаковыми длинами рёбер образуют одну из двух бесконечных последовательностей полуправильных многогранников (другую последовательность образуют антипризмы).

Наклонными называются призмы, рёбра которых не перпендикулярны плоскости основания.

Усечённая призма — многогранник, который отсекается от призмы непараллельной основанию плоскостью[2]. Усечённая призма сама призмой не является.

Диаграммы Шлегеля


Треугольная
призма

4-угольная
призма

5-угольная
призма

6-угольная
призма

7-угольная
призма

8-угольная
призма

Симметрия

Группой симметрии прямой -угольной призмы с правильным основанием является группа Dnh порядка 4n, за исключением куба, который имеет группу симметрии O<sub>h</sub>[en] порядка 48, содержащую три версии D4h в качестве подгрупп. Группой вращений[en] является Dn порядка 2n, за исключением случая куба, для которого группой вращений является группа O[en] порядка 24, имеющая три версии D4 в качестве подгрупп.

Группа симметрии Dnh включает центральную симметрию в том и только в том случае, когда n чётно.

Обобщения

Призматические многогранники

Призматический многогранник — это обобщение призмы в пространствах размерности 4 и выше. -мерный призматический многогранник конструируется из двух (n − 1)-мерных многогранников, перенесённых в следующую размерность.

Элементы призматического n-мерного многогранника удваиваются из элементов (n − 1)-мерного многогранника, затем создаются новые элементы следующего уровня.

Возьмём -мерный многогранник с элементами (i-мерная грань, i = 0, …, n). Призматический ()-мерный многогранник будет иметь элементов размерности i (при , ).

По размерностям:

  • Берём многоугольник с вершинами и сторонами. Получим призму с 2 вершинами, 3 рёбрами и гранями.
  • Берём многогранник с v вершинами, e рёбрами и f гранями. Получаем (4-мерную) призму с 2v вершинами, рёбрами, гранями и ячейками.
  • Берём 4-мерный многогранник с v вершинами, e рёбрами, f гранями и c ячейками. Получаем (5-мерную) призму с 2v вершинами, рёбрами, (2-мерными) гранями, ячейками и гиперячейками.

Однородные призматические многогранники

Правильный -многогранник, представленный символом Шлефли {p, q, ..., t}, может образовать однородный призматический многогранник размерности (n + 1), представленный прямым произведением двух символов Шлефли: {p, q, ..., t}×{}.

По размерностям:

  • Призма из 0-мерного многогранника — это отрезок, представленный пустым символом Шлефли {}.
  • Призма из 1-мерного многогранника — это прямоугольник, полученный из двух отрезков. Эта призма представляется как произведение символов Шлефли {}×{}. Если призма является квадратом, запись можно сократить: {}×{} = {4}.
    • Пример: Квадрат, {}×{}, два параллельных отрезка, соединённые двумя другими отрезками, сторонами.
  • многоугольная призма — это 3-мерная призма, полученная из двух многоугольников (один получен параллельным переносом другого), которые связаны прямоугольниками. Из правильного многоугольника {p} можно получить однородную n-угольную призму, представленную произведением {p}×{}. Если p = 4, призма становится кубом: {4}×{} = {4, 3}.
  • 4-мерная призма, полученная из двух многогранников (один получен параллельным переносом другого), со связывающими 3-мерными призматическими ячейками. Из правильного многогранника {pq} можно получить однородную 4-мерную призму, представленную произведением {pq}×{}. Если многогранник является кубом и стороны призмы тоже кубы, призма превращается в тессеракт: {4, 3}×{} = {4, 3, 3}.
    • Пример: додекаэдральная призма[en], {5, 3}×{}, два параллельных додекаэдра, соединённых 12 пятиугольными призмами (сторонами).

Призматические многогранники более высоких размерностей также существуют как прямые произведения двух любых многогранников. Размерность призматического многогранника равна произведению размерностей элементов произведения. Первый пример такого произведения существует в 4-мерном пространстве и называется дуопризмами, которые получаются произведением двух многоугольников. Правильные дуопризмы представляются символом {p}×{q}.

Семейство правильных призм
Многоугольник
Мозаика
Конфигурация 3.4.4 4.4.4 5.4.4 6.4.4 7.4.4 8.4.4 9.4.4 10.4.4 11.4.4 12.4.4 17.4.4 ∞.4.4

Скрученная призма и антипризма

Скрученная призма — это невыпуклый призматический многогранник, полученный из однородной q-угольной путём деления боковых граней диагональю и вращения верхнего основания, обычно на угол радиан ( градусов), в направлении, при котором стороны становятся вогнутыми[3][4].

Скрученная призма не может быть разбита на тетраэдры без введения новых вершин. Простейший пример с треугольными основаниями называется многогранником Шёнхардта.

Скрученная призма топологически идентична антипризме, но имеет половину симметрий: Dn, [n,2]+, порядка 2n. Эту призму можно рассматривать как выпуклую антипризму, у которой удалены тетраэдры между парами треугольников.

Треугольная Четырёхугольные 12-угольная

Многогранник Шёнхардта

Скрученная квадратная антипризма

Квадратная антипризма

Скрученная двенадцатиугольная антипризма

Связанные многогранники и мозаики

Семейство правильных призм
Многоугольник
Мозаика
Конфигурация 3.4.4 4.4.4 5.4.4 6.4.4 7.4.4 8.4.4 9.4.4 10.4.4 11.4.4 12.4.4 17.4.4 ∞.4.4
Семейство выпуклых куполов
n 2 3 4 5 6
Название {2} || t{2} {3} || t{3} {4} || t{4} {5} || t{5} {6} || t{6}
Купол

Диагональный купол

Трёхскатный купол

Четырёхскатный купол

Пятискатный купол

Шестискатный купол
(плоский)
Связанные
однородные
многогранники
Треугольная призма
node_12node3node_1
Кубооктаэдр
node_13node3node_1
 Ромбокубо-
октаэдр

node_14node3node_1
Ромбоикосо-
додекаэдр

node_15node3node_1
Ромботри-<br/>шестиугольная<br/>мозаика[en]
node_16node3node_1

Симметрии

Призмы топологически являются частью последовательности однородных усечённых многогранников с конфигурациями вершин (3.2n.2n) и [n,3].

Призмы топологически являются частью последовательности скошенных многогранников с вершинными фигурами (3.4.n.4) и мозаик на гиперболической плоскости. Эти вершинно транзитивные фигуры имеют (*n32) зеркальную симметрию[en].

Соединение многогранников

Существует 4 однородных соединения треугольных призм:

Соединение четырёх треугольных призм[en], соединение восьми треугольных призм[en], соединение десяти треугольных призм[en], соединение двенадцати треугольных призм[en].

Соты

Существует 9 однородных сот, включающих ячейки в виде треугольных призм:

Связанные многогранники

Треугольная призма является первым многогранником в ряду полуправильных многогранников[en]. Каждый последующий однородный многогранник содержит в качестве вершинной фигуры предыдущий многогранник. Торольд Госсет[en] идентифицировал эту серию в 1900 как содержащую все фасеты правильных многомерных многогранников, все симплексы и ортоплексы (правильные треугольники и квадраты для случая треугольных призм). В нотации Коксетера треугольная призма задаётся символом −121.

Четырёхмерное пространство

Треугольная призма служит ячейкой во множестве четырёхмерных однородных 4-мерных многогранников[en], включая:

тетраэдральная призма[en]
node_13node3node2node_1
октаэдральная призма[en]
node_13node4node2node_1
кубооктаэдральная призма[en]
node3node_14node2node_1
икосаэдральная призма[en]
node_13node5node2node_1
икосододекаэдральная призма[en]
node3node_15node2node_1
усечённая додекаэдральная призма[en]
node3node_15node_12node_1
ромбоикоси-<br/>додекаэдральная призма[en]
node_13node5node_12node_1
ромбокуб-<br/>октаэдральная призма[en]
node_13node4node_12node_1
усечённая кубическая призма[en]
node3node_14node_12node_1
плосконосая додекаэдральная призма[en]
node_h5node_h3node_h2node_1
n-угольная антипризматическая призма[en]
node_hnnode_h2xnode_h2node_1
скошенный 5-ячейник[en]
node_13node3node_13node
скошено-усечённый 5-ячейник[en]
node_13node_13node_13node
обструганный 5-ячейник[en]
node_13node3node3node_1
струг-усечённый 5-ячейник[en]
node_13node_13node3node_1
скошенный тессеракт[en]
node_14node3node_13node
скошено-усечённый тессеракт[en]
node_14node_13node_13node
обструганный тессеракт[en]
node_14node3node3node_1
струг-усечённый тессеракт[en]
node_14node_13node3node_1
скошенный 24-ячейник[en]
node_13node4node_13node
скошено-усечённый 24-ячейник[en]
node_13node_14node_13node
обструганный 24-ячейник[en]
node_13node4node3node_1
струг-усечённый 24-ячейник[en]
node_13node_14node3node_1
скошенный 120-ячейник[en]
node_15node3node_13node
скошено-усечённый 120-ячейник[en]
node_15node_13node_13node
обструганный 120-ячейник[en]
node_15node3node3node_1
струг-усечённый 120-ячейник[en]
node_15node_13node3node_1

См. также

Примечания

  1. Kern, Bland, 1938, с. 28.
  2. Усечённая призма // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  3. Gorini, 2003, с. 172.
  4. Рисунки скрученных призм. Дата обращения: 28 января 2019. Архивировано 29 января 2019 года.

Литература

  • William F. Kern, James R. Bland. Solid Mensuration with proofs. — 1938.
  • Catherine A. Gorini. The facts on file: Geometry handbook. — New York: Infobase Publishing, 2003. — (Facts on file). — ISBN 0-8160-4875-4.
  • Anthony Pugh. Chapter 2: Archimedean polyhedra, prisma and antiprisms // Polyhedra: A visual approach. — California: University of California Press Berkeley, 1976. — ISBN 0-520-03056-7.

Ссылки

Эта страница в последний раз была отредактирована 16 апреля 2024 в 07:55.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).