Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Прижимная сила (аэродинамика)

Из Википедии — свободной энциклопедии

Прижимная сила — аэродинамическая сила, прижимающая автомобиль к дорожному покрытию[1]. Эта сила улучшает сцепление покрышек автомобиля с дорогой и тем самым улучшает его манёвренность, торможение и разгон.

Роль в конструкции гоночных автомобилей

Для гоночных автомобилей с открытыми колёсами (включая Формулу 1), прижимная сила является одним из четырёх важнейших характеристик дизайна (наряду с мощностью двигателя, весом, и покрышками) по крайней мере с 1970-х годов[2], самой важной по состоянию на начало XXI века[3]. Известен случай, когда менее мощный 8-цилиндровый двигатель Cosworth DFV с конца 1960-х годов и до начала 1980-х крайне успешно конкурировал со значительно более мощными 12-цилиндровыми оппозитными двигателями просто потому, что V-образная, узкая внизу, форма двигателя DFV предоставляла бо́льшую свободу в конструировании днища автомобиля и обеспечивала более высокую прижимную силу с использованием эффекта земли[4][5]. Осознание того, что прижимная сила как аэродинамическая характеристика важнее лобового сопротивления пришло постепенно в начале 1960-х годов. Хотя уже в 1956 году швейцарский инженер Майкл Мэй (англ.) установил первое антикрыло на Порше 550, даже в начале 1960-х годов некоторые специалисты по аэродинамике подчёркивали, что самым важным для гоночного автомобиля является лобовое сопротивление[3].

В течение 15 лет с середины 1960-х годов конструкторы сумели утроить прижимную силу, вынудив внести изменения в правила Формулы 1 для обеспечения безопасности[6][3]. Период с 1978 по 1982 год характеризуется как «революция эффекта земли»[5]. Команды, избравшие оппозитные двигатели почти метровой ширины, были вынуждены прибегать к отчаянным мерам. Именно тогда команда Брэбем построила знаменитый BT46B, в котором гигантский вентилятор, предназначенный якобы для охлаждения двигателя, на самом деле отсасывал воздух из-под днища, увеличивая прижимную силу (после одной — победной — гонки этот «пылесос» больше не использовался из-за опасного разбрасывания вентилятором мусора с поверхности трека). Команда Феррари, также избравшая оппозитные моторы, не верила в реальность эффекта земли, сконцентрировалась на усовершенствовании двигателя и шасси — и безнадёжно проигрывала вплоть до 1981 года, когда с приходом нового главного инженера курс был изменён[5].

Необходимость поддержания постоянного зазора для использования эффекта земли была основной причиной перехода от алюминиевых к более жёстким углепластиковым корпусам (1980 год, команда Макларен)[5].

В молодёжных формулах применение устройств для увеличения прижимной силы ограничено или вообще запрещено[3].

Подобно самолёту, крылья болида с высокой прижимной силой теряют свою эффективность при попадании в спутную струю другого болида, потому пилоты жалуются на потерю прижимной силы и затруднённый обгон, что снижает зрелищность гонки. Высокая прижимная сила также сократила дистанцию остановки до десятков метров, что затрудняет обгон на торможении (англ. out-braking). С целью поддержания зрелищности и обеспечения безопасности по мере усовершенствования технологии Международная автомобильная федерация вынуждена модифицировать правила, чтобы уменьшить сцепление болидов с треком. Помимо модификации покрышек (что иногда практикуется), путь к этой цели лежит через ограничение прижимной силы (например, в 1998 году предельная ширина автомобилей Формулы 1 была уменьшена на 20 см, тем самым уменьшив площадь аэродинамических элементов). Специально созданная в 2007 году рабочая группа по обгону (англ. Overtaking Working Group, OWG) к 2009 году разработала новые правила, которые вновь снизили прижимную силу и позволили болидам сближаться с меньшим риском; в 2011 году для облегчения обгона на прямых было разрешено регулируемое заднее антикрыло, которое, используя подвижные элементы, позволило в момент обгона уменьшать лобовое сопротивление (и прижимную силу)[3].

Устройства для повышения прижимной силы

Антикрыло

Принцип действия антикрыла аналогичен перевёрнутому крылу самолёта: при обтекании воздушным потоком крыло создаёт силу, но не подъёмную, а прижимную. В ранних конструкциях антикрылья располагались на стойках над центром автомобилю, современные болиды Формулы 1 имеют два антикрыла: переднее и заднее[источник не указан 829 дней]. Немногочисленные серийные автомобили с антикрылом используют заднее расположение на багажнике.

После неудачного эксперимента Мэя (его машину не допустили к гонкам) следующую попытку сделал через десять лет Джим Холл (англ.). Его Chaparral 2E CanAm (англ.) с крылом, смонтированным на высоких подпорках, был немедленно скопирован другими командами. Высокое расположение антикрыла привело к ряду аварий и призывам запретить его использование, однако после консультаций с конструкторами крылья были сохранены, с существенными ограничениями. В течение 1970-х годов антикрылья распространились и на другие категории автомобилей[3].

Поначалу антикрылья Формулы 1 были подвижными, с изменяемым углом атаки, но правила быстро запретили такую конфигурацию: все «аэродинамические» устройства должны оставаться неподвижными по отношению к корпусу[3].

С началом применения турбонаддува мощности моторов резко возросли, и дополнительное сопротивление, вносимое антикрыльями, стало неважным. В эту эпоху (1980-е годы) антикрылья обросли дополнительными «крылышками» для увеличения прижимной силы[3].

Юбка

Термин «юбка» в русском языке имеет два значения: так иногда называется передний спойлер (см. ниже), а также этим термином обозначаются гибкие свесы по сторонам корпуса, предназначенные отделения воздушного потока под днищем. Введённые командой «Лотус» в 1978 году гибкие скользящие юбки были успешны (в сочетании с профилирование днища для создания эффекта Вентури, см. ниже), но уже в 1981 году они были запрещены[7], так как иногда отрывались и создавали опасность на треке.

Вентилятор

Дж. Холл применил юбки раньше, в 1970 году, в сочетании с вентиляторами для создания разрежения под днищем его Chapparal 2J. Эти устройства подпали под запрет о движущихся аэродинамических деталях, что и заставило Бребэм позже утверждать, что их вентилятор попросту охлаждает двигатель[3].

Диффузор

Прорыв в области увеличения прижимной силы осуществила команда Лотус, сформировав днище болида по образцу сопла Вентури. Первая модель, Лотус 78, была не очень удачной, но уже в 1978 году следующий вариант, Лотус 79, достиг выдающихся успехов. Дизайн был быстро скопирован и улучшен в таких классических болидах как FW07 команды Уильямс и автомобилях других формул Ralt RT2/3/4. Серийные спортивные автомобили использовали широкие днища для создания прижимных сил, измерявшихся в тоннах. Однако правила были вновь изменены, и стали требовать плоского днища между осями[3].

С завершением «турбо-эпохи» в 1989 году сопротивление, вносимое антикрыльями, опять стало заметным, конструкторы вновь обратились к днищу автомобиля и обнаружили, что при небольшом наклоне корпуса вперёд разрежение может быть достигнуто даже при плоском днище, но для этого воздух должен свободно выходить из-под корпуса в его задней части. Форма кузова, обеспечивающая расширение зазора между кузовом и покрытием в задней части автомобиля стала называться диффузором[3].

Спойлер

Примечания

  1. Глоссарий // Мартин Роуч. Автомобили. Самые дорогие и самые мощные суперкары всех времен. АСТ, 2017. С. 253.
  2. Wright.P.G., Formula 1 Technology, Society of Automotive Engineers, Warrendale, PA, 2001. (англ.)
  3. 1 2 3 4 5 6 7 8 9 10 11 Макбит, 2017.
  4. Hughes, Mark (2004) The Unofficial Complete Encyclopedia of Formula 1, p. 55, Lorenz Books, ISBN 0-7548-1509-9 (англ.) С. 55.
  5. 1 2 3 4 Jenkins, Mark, Steven Floyd. Trajectories in the evolution of technology: A multi-level study of competition in Formula 1 racing // Organization studies 22.6 (2001): 945—969. (англ.)
  6. P.G. Wright. The influence of aerodynamics on the design of Formula One racing cars // International Journal of Vehicle Design 3(4):383 — 397. November 1982. doi:10.1504/IJVD.1982.061285
  7. Чжан, 2006, с. 40.

Литература

  • McBeath, Simon. Competition car downforce: a practical guide. GT Foulis, 1998. 192 с. (англ.) ISBN 978-0854299775
  • Agathangelou, Ben, Gascoyne, Mike. Aerodynamic Design Considerations of a Formula 1 Racing Car. SAE Paper No. 980399, Society of Automotive Engineers, Warrendael, PA, 1998.
  • Simon McBeath. Historical Background // Competition Car Aerodynamics. — Veloce Publishing Ltd, 2017. — 320 p.  (англ.)
  • Simon McBeath. Airdams, Splitters and Spoilers // Competition Car Aerodynamics. — Veloce Publishing Ltd, 2017. — 320 p.  (англ.)
  • Zhang X., Toet W., Zerihan J. Ground effect aerodynamics of race cars (англ.) // Applied Mechanics Reviews. — 2006. — Vol. 59, no. 1. — P. 33—49.
Эта страница в последний раз была отредактирована 8 июня 2021 в 07:24.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).