Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Преобразование Меллина

Из Википедии — свободной энциклопедии

Преобразование Меллинапреобразование, которое можно рассматривать как мультипликативную версию двустороннего преобразования Лапласа. Это интегральное преобразование тесно связано с теорией рядов Дирихле и часто используется в теории чисел и в теории асимптотических разложений. Преобразование Меллина тесно связано с преобразованием Лапласа и преобразованием Фурье, а также теорией гамма-функций и теорией смежных специальных функций.

Преобразование названо по имени исследовавшего его финского математика Ялмара Меллина.

Определение

Прямое преобразование Меллина задаётся формулой:

.

Обратное преобразование — формулой:

.

Предполагается, что интегрирование происходит в комплексной плоскости. Условия, при которых можно делать преобразование, совпадают с условиями теоремы обратного преобразования Меллина  (англ.).

Связь с другими преобразованиями

Двусторонний интеграл Лапласа может быть выражен через преобразование Меллина:

.

И наоборот: преобразование Меллина выражается через преобразование Лапласа формулой:

Преобразование Фурье может быть выражено через преобразование Меллина формулой:

.

Обратно:

.

Преобразование Меллина также связывает интерполяционные формулы Ньютона или биномиальные преобразования с производящей функцией последовательности с помощью цикла Пуассона — Меллина — Ньютона.

Примеры

Интеграл Каэна — Меллина

Если:

  • на главной ветви  (англ.),

то[1]

,
где
гамма-функция.

Назван по именам Ялмара Меллина и французского математика Эжена Каэна (фр. Eugène Cahen).

Преобразование Меллина для лебегова пространства

В гильбертовом пространстве преобразование Меллина задаётся несколько иначе. Для лебегова пространства любая фундаментальная полоса включает в себя . В связи с этим возможно задать линейный оператор как:

.

То есть:

.

Обычно этот оператор обозначается и называется преобразованием Меллина, но здесь и в дальнейшем мы будем использовать обозначение .

теоремы обратного преобразования Меллина  (англ.) показывает, что

Кроме того, этот оператор изометричен, то есть

для .

Это объясняет коэффициент

Связь с теорией вероятностей

В теории вероятностей преобразование Меллина является важным инструментом для изучения распределения случайных величин[2].

Если:

  • — случайная величина,

то преобразование Меллина определяется как:

где мнимая единица.

Преобразование Меллина случайной величины однозначно определяет её функцию распределения .

Применение

Преобразование Меллина особенно важно для информационных технологий, особенно для распознавания образов.

Примечания

  1. Hardy, G. H.; Littlewood, J. E. Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes (англ.) // Acta Mathematica : journal. — 1916. — Vol. 41, no. 1. — P. 119—196. — doi:10.1007/BF02422942. (See notes therein for further references to Cahen’s and Mellin’s work, including Cahen’s thesis.)
  2. Galambos, Simonelli, 2004, стр. 15

Литература

  • Galambos, Janos; Simonelli, Italo. Products of random variables: applications to problems of physics and to arithmetical functions (англ.). — Marcel Dekker, Inc.  (англ.), 2004. — ISBN 0-8247-5402-6.
  • Paris, R. B.; Kaminski, D. Asymptotics and Mellin-Barnes Integrals (неопр.). — Cambridge University Press, 2001.
  • Polyanin, A. D.; Manzhirov, A. V. Handbook of Integral Equations (неопр.). — Boca Raton: CRC Press, 1998. — ISBN 0-8493-2876-4.
  • Flajolet, P.; Gourdon, X.; Dumas, P. Mellin transforms and asymptotics: Harmonic sums (англ.) // Theoretical Computer Science  (англ.). — 1995. — Vol. 144, no. 1—2. — P. 3—58.
  • Tables of Integral Transforms Архивная копия от 30 июня 2007 на Wayback Machine at EqWorld: The World of Mathematical Equations.
  • Hazewinkel, Michiel, ed. (2001), "Mellin transform", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
  • Weisstein, Eric W. Mellin Transform (англ.) на сайте Wolfram MathWorld.

Ссылки

Эта страница в последний раз была отредактирована 20 марта 2024 в 17:03.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).