Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Предпоря́док (квазипоря́док) — бинарное отношение на множестве, обладающее свойствами рефлексивности и транзитивности. Обычно это отношение обозначается , тогда аксиомы предпорядка на множестве принимают вид:

,
.

Линейный предпорядок — предпорядок на множестве, для которого любые два элемента множества сравнимы:

.

Теория категорий

Категория называется предпорядком, если для любых двух объектов существует не более одного морфизма . Если  — малая категория, то на множестве её объектов можно задать отношение предпорядка по следующему правилу:

.

Из аксиом категории следует, что такое отношение будет рефлексивным и транзитивным. Предпорядок — абстрактная категория, то есть его в общем случае нельзя представить как категорию некоторых множеств с заданной структурой и отображениями, сохраняющими эту структуру. Также предпорядок — скелетная категория.

Если малая категория полна в малом, то она является предпорядком, причём каждое малое множество его элементов имеет наибольшую нижнюю грань. Произведение набора (множества, класса) объектов предпорядка — это наибольшая нижняя грань для этого набора. Копроизведение набора объектов — это его наименьшая верхняя грань. Начальный объект в предпорядке , если он существует, — это его наименьший объект, так что . Аналогично, терминальный объект предпорядка — это наибольший объект в нём.

Объектами категории предпорядков (обозначаемой обычно ) являются предпорядки (в смысле категорий), в частности, множества, на которых задано отношение предпорядка. Морфизмы в этой категории — отображения множеств, сохраняющие отношение предпорядка, то есть монотонные отображения. Подкатегория малых предпорядков  — конкретная категория, наделённая очевидным унивалентным забывающим функтором:

,

сопоставляющим каждому малому предпорядку множество его объектов, а каждому морфизму — монотонное отображение соответствующих множеств. Этот функтор создаёт пределы в . Таким образом, аналогично , начальным объектом в является пустое множество, терминальным объектом — множество из одного элемента, произведением объектов — прямое произведение соответствующих множеств с покомпонентным сравнением.

Литература

  • Голдблатт Р. Топосы. Категорный анализ логики = Topoi. The categorial analysis of logic / Пер. с англ. В. Н. Гришина и В. В. Шокурова под ред. Д. А. Бочвара. — М.: Мир, 1983. — 488 с.
  • Маклейн С. Глава 1. Категории, функторы и естественные преобразования // Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. — М.: Физматлит, 2004. — С. 17—42. — 352 с. — ISBN 5-9221-0400-4.


Эта страница в последний раз была отредактирована 11 июля 2021 в 14:31.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).