Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Ряды Фарея (также дроби Фарея, последовательность Фарея или таблица Фарея) — семейство конечных подмножеств рациональных чисел.

Определение

Последовательность Фарея -го порядка представляет собой возрастающий ряд всех положительных несократимых правильных дробей, знаменатель которых меньше или равен :

Последовательность Фарея порядка можно построить из последовательности порядка по следующему правилу:

  1. Копируем все элементы последовательности порядка .
  2. Если сумма знаменателей в двух соседних дробях последовательности порядка даёт число не большее, чем , то вставляем между этими дробями их медианту, равную отношению суммы их числителей к сумме знаменателей.

Пример

Последовательности Фарея для от 1 до 8:

Свойства

Если  — две соседние дроби в ряде Фарея, тогда .

Алгоритм генерации

Алгоритм генерации всех дробей Fn очень прост, как в возрастающем, так и в убывающем порядке. Каждая итерация алгоритма строит следующую дробь на основе двух предыдущих. Таким образом, если и — две уже построенные дроби, а — следующая неизвестная, то выполняется . Это значит, что для некоторого целого верно и , отсюда и . Так как должна быть максимально близкой к , то положим знаменатель максимальным из возможных, то есть , отсюда c учётом того, что — целое, имеем и

Пример реализации на Python:

def farey( n, asc=True ):
    if asc: 
        a, b, c, d = 0, 1, 1, n
    else:
        a, b, c, d = 1, 1, n-1, n
    print "%d/%d" % (a,b)
    while (asc and c <= n) or (not asc and a > 0):
        k = int((n + b)/d)
        a, b, c, d = c, d, k*c - a, k*d - b
        print "%d/%d" % (a,b)

Пример реализации на JavaScript:

class Fraction {
  constructor(numer, denom) {
    this.numer = numer;
    this.denom = denom;
  }
  copy() {
    return new Fraction(this.numer, this.denom);
  }
}
function* farey(n, asc = true) {
  let [a, b] = asc ? [
    new Fraction(0, 1),
    new Fraction(1, n)
  ] : [
    new Fraction(1, 1),
    new Fraction(n - 1, n)
  ];
  yield a.copy();
  while (asc && b.numer <= n || !asc && a.numer > 0) {
    yield b.copy();
    const k = Math.floor((n + a.denom) / b.denom),
      next = new Fraction(k * b.numer - a.numer, k * b.denom - a.denom);
    a = b;
    b = next;
  }
}

Таким образом можно построить сколь угодно большое множество всех дробей в сокращенном виде, что можно использовать, например, для решения Диофантова уравнения полным перебором в рациональных числах.

История

Джон Фарей — известный геолог, один из пионеров геофизики. Его единственным вкладом в математику были дроби, названные его именем. В 1816 году была опубликована статья Фарея «On a curious property of vulgar fractions» («Об интересном свойстве обыкновенных дробей»), в которой Фарей определил последовательность . Эта статья Фарея дошла до Коши, который в том же году опубликовал доказательство гипотезы Фарея о том, что каждый новый член последовательности Фарея порядка является медиантой своих соседей. Последовательность, описанная Фареем в 1816 году, была использована Шарлем Харосом (англ.) в его статье 1802 года о приближении десятичных дробей обыкновенными дробями.

См. также

Ссылки

Эта страница в последний раз была отредактирована 22 сентября 2021 в 08:20.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).