Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Полное метрическое пространство

Из Википедии — свободной энциклопедии

Полное метрическое пространствометрическое пространство, в котором каждая фундаментальная последовательность сходится (к элементу того же пространства)[1].

В большинстве случаев рассматривают именно полные метрические пространства. Для неполных пространств существует операция пополнения, дающая возможность рассматривать исходное пространство как плотное множество в своём пополнении. Операция пополнения во многом аналогична операции замыкания для подмножеств.

Пополнение

Всякое метрическое пространство можно вложить в полное пространство таким образом, что метрика продолжает метрику , а подпространство всюду плотно в . Такое пространство называется пополнением и обычно обозначается .

Построение

Для метрического пространства , на множестве фундаментальных последовательностей в можно ввести отношение эквивалентности

Множество классов эквивалентности с метрикой, определённой

является метрическим пространством. Само пространство изометрически вкладывается в него следующим образом: точке соответствует класс постоянной последовательности . Получившееся пространство и будет пополнением .

Свойства

  • Пополнение метрического пространства единственно, с точностью до изометрии.
  • Пополнение метрического пространства изометрично замыканию образа при вложении Куратовского
  • Полнота наследуется замкнутыми подмножествами полного метрического пространства.
  • Полные метрические пространства являются пространствами второй категории Бэра. То есть если полное пространство исчерпывается счётным объединением замкнутых множеств, то хотя бы у одного из них есть внутренние точки.
  • Метрическое пространство компактно тогда и только тогда, когда оно полно и вполне ограничено; то есть, для любого пространство можно покрыть конечным числом шаров радиуса .
  • Теорема Банаха о неподвижной точке. Сжимающие отображения полного метрического пространства в себя имеют неподвижную точку.
  • Полнота метрического пространства не является топологическим свойством. То есть полное метрическое пространство может оказаться не полным при замене метрики на эквивалентную, то есть метрику, порождающую ту же топологию, что и исходная метрика.
    • Топологическим свойством является наличие хотя бы одной полной метрики в классе метрик, порождающих топологию метрического пространства (так называемая метрическая топологическая полнота или метризуемость полной метрикой).

Примеры

Полные метрические пространства

  • Множество вещественных (действительных) чисел полно в стандартной метрике естественная метрика на числовой оси.
  • Множество с заданной на нём метрикой евклидова метрика (или -метрика);
  • Вообще, любое конечномерное евклидово или унитарное пространство полно[1].
  • Свойство полноты является обязательным в определении банахова пространства, в частности гильбертова пространства.
  • Пространство непрерывных на отрезке функций с равномерной метрикой является полным метрическим пространством, а потому является банаховым, если рассматривать его как нормированное линейное пространство.

Неполные метрические пространства

  • Рациональные числа со стандартным расстоянием являются неполным метрическим пространством. Результатом пополнения этого пространства будет множество всех вещественных чисел .
  • Также, рациональные числа могут быть снабжены p-адическим нормированием, пополнение по которому приводит к полю p-адических чисел .
  • Пространство интегрируемых (по Риману) на отрезке функций в интегральной метрике . Результатом пополнения этого пространства будет пространство интегрируемых по Лебегу функций, заданных на том же отрезке.

Вариации и обобщения

  • Если имеет алгебраическую структуру, согласованную с метрикой, например топологического кольца, то эта структура естественным образом переносится и на его пополнение.

Примечания

  1. 1 2 Шилов, 1961, с. 40.

Литература

  • Зорич В.А. Математический анализ. — Т. 2. IX, §5.
  • Шилов Г.Е. Математический анализ. Специальный курс. — М.: Наука, 1961. — 436 с.
Эта страница в последний раз была отредактирована 2 декабря 2022 в 09:17.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).