Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Положение класса P в иерархии классов сложности.

В теории алгоритмов классом P (от англ. polynomial) называют множество задач, для которых существуют «быстрые» алгоритмы решения (время работы которых полиномиально зависит от размера входных данных). Класс P включён в более широкие классы сложности алгоритмов.

Определения

Формальное определение

Алгоритм отождествляется с детерминированной машиной Тьюринга, которая вычисляет ответ по данному на входную ленту слову из входного алфавита . Временем работы алгоритма при фиксированном входном слове x называется количество рабочих тактов машины Тьюринга от начала до остановки машины. Сложностью функции , вычисляемой некоторой машиной Тьюринга, называется функция , зависящая от длины входного слова и равная максимуму времени работы машины по всем входным словам фиксированной длины:

.

Если для функции f существует машина Тьюринга M такая, что для некоторого числа c и достаточно больших n, то говорят, что она принадлежит классу P, или полиномиальна по времени.

Согласно тезису Чёрча — Тьюринга, любой мыслимый алгоритм можно реализовать на машине Тьюринга. Для любого языка программирования можно определить класс P подобным образом (заменив в определении машину Тьюринга на реализацию языка программирования). Если компилятор языка, на котором реализован алгоритм, замедляет исполнение алгоритма полиномиально (то есть время выполнения алгоритма на машине Тьюринга меньше некоторого многочлена от времени выполнения его на языке программирования), то определения классов P для этого языка и для машины Тьюринга совпадают. Код на ассемблере допускает преобразование в машину Тьюринга с небольшим полиномиальным замедлением, а поскольку все существующие языки допускают компиляцию в ассемблер (опять же, с полиномиальным замедлением), то определения класса P для машин Тьюринга и для любого существующего языка программирования совпадают.

Более узкое определение

Иногда под классом P имеют в виду более узкий класс функций, а именно класс предикатов (функций ). В таком случае языком L, который распознаётся данным предикатом, называется множество слов, на которых предикат равен 1. Языками класса P называются языки, для которых существуют распознающие их предикаты класса P. Очевидно, что если языки и лежат в классе P, то и их объединение, пересечение и дополнения также лежат в классе P.

Включения класса P в другие классы

Варианты положения класса P в иерархии классов сложности, в зависимости решения вопроса о равенстве классов P и NP.

Класс P является одним из самых узких классов сложности. Алгоритмы, принадлежащие ему, принадлежат также классу NP, классу BPP (как допускающие полиномиальную реализацию с нулевой ошибкой), классу PSPACE (т.к. зона работы на машине Тьюринга всегда меньше времени), классу P/Poly (для доказательства этого факта используется понятие протокола работы машины, который переделывается в булеву схему полиномиального размера).

Уже более 30 лет остаётся нерешённой задача о равенстве классов P и NP. Если они равны, то любую задачу из класса NP можно решить быстро (за полиномиальное время). Однако научное сообщество склоняется в сторону отрицательного ответа на этот вопрос. Кроме того, не доказана и строгость включения в более широкие классы, например, в PSPACE, но равенство P и PSPACE выглядит на данный момент очень сомнительно.

Примеры задач

Задачи, принадлежащие классу P

Примерами задач из класса P являются целочисленное сложение, умножение, деление, взятие остатка от деления, умножения матриц, выяснение связности графов, сортировка множества из n чисел, нахождение эйлерова цикла на графе из m рёбер, обнаружение в тексте длиной n некоторого слова, построение покрывающего дерева минимальной стоимости, линейное программирование и некоторые другие.

Задачи, принадлежность которых классу P неизвестна

Существует много задач, для которых не найдено полиномиального алгоритма, но не доказано, что его не существует. Соответственно, неизвестно, принадлежат ли такие задачи классу P. Вот некоторые из них:

  1. Задача коммивояжёра (а также все остальные NP-полные задачи). Полиномиальное решение этой задачи равносильно установлению равенства классов P и NP.
  2. Разложение числа на простые множители.
  3. Дискретное логарифмирование в конечном поле.
  4. Задача о скрытой подгруппе с n образующими.
  5. Дискретное логарифмирование в аддитивной группе точек на эллиптической кривой.

Практическое значение

Поскольку часто приходится вычислять значения функций на входных данных большого объёма, нахождение полиномиальных алгоритмов для вычисления функций является очень важной задачей. Считается, что вычислять функции, не лежащие в классе P, заметно сложнее, чем лежащие. Большинство алгоритмов, лежащих в классе P, имеют сложность, не превосходящую многочлен небольшой степени от размера входных данных. Например, стандартный алгоритм перемножения матриц требует n3 умножений (хотя существуют и более быстрые алгоритмы, например, алгоритм Штрассена). Степень многочлена редко бывает большой. Один из таких случаев — предложенный в 2002 году индийскими математиками тест Агравала — Каяла — Саксены, выясняющий, является ли число n простым, за O(log6n) операций.

Литература

  • Томас Х. Кормен и др. Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-е изд. — М.: «Вильямс», 2006. — 1296 с. — ISBN 0-07-013151-1.
  • Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений = Introduction to Automata Theory, Languages, and Computation. — М.: «Вильямс», 2002. — 528 с. — ISBN 0-201-44124-1.

Ссылки

Эта страница в последний раз была отредактирована 29 июня 2023 в 22:56.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).