Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Подгруппа ― подмножество группы , само являющееся группой относительно группового умножения на .

Подмножество группы является её подгруппой тогда и только тогда, когда:

  1. содержит единичный элемент из
  2. содержит произведение любых двух элементов из ,
  3. содержит вместе со всяким своим элементом обратный к нему элемент .

В случае конечных и, вообще, периодических групп третье условие является следствием первых двух.

Примеры

  • Подмножество группы , состоящее из одного элемента , будет, очевидно, подгруппой, и эта подгруппа называется единичной подгруппой группы .
  • Сама также является своей подгруппой.

Связанные определения

  • Всякая подгруппа, отличная от всей группы, называется истинной подгруппой этой группы. Истинная подгруппа некоторой бесконечной группы может быть изоморфна самой группе.
  • Сама группа и единичная подгруппа называется несобственными подгруппами группы , все остальные ― собственными.
  • Пересечение всех подгрупп группы , содержащих все элементы некоторого непустого множества , называется подгруппой, порождённой множеством , и обозначается .
    • Если состоит из одного элемента , то называется циклической подгруппой элемента .
    • Группа, совпадающая с одной из своих циклических подгрупп, называется циклической группой.
  • Если группа изоморфна некоторой подгруппе группы , то говорят, что группа может быть вложена в группу .
  • Если — подгруппа группы , то для любого подмножество
является подгруппой. При этом подгруппы и называются сопряжёнными.

Основные свойства

  • Пересечение подгрупп А и В также является подгруппой.
  • Все подгруппы образуют полную решетку по включению, называемую решеткой подгрупп.
  • Непустое множество является подгруппой группы тогда и только тогда, когда для любых выполняется
  • Теоретико-множественное пересечение любых двух (и любого множества) подгрупп группы является подгруппой группы .
  • Теоретико-множественное объединение подгрупп, вообще говоря, не обязано являться подгруппой. Объединением подгрупп и называется подгруппа, порожденная объединением множеств .
  • Гомоморфный образ подгрупп ― подгруппа.
  • Если даны две группы и каждая из них изоморфна некоторой истинной подгруппе другой, то отсюда ещё не следует изоморфизм самих этих групп.

Смежные классы

Для подгруппы и некоторого элемента , определяется левый смежный класс . Количество левых смежных классов подгруппы называется индексом подгруппы в и обозначается . Аналогично можно определить правые классы смежности .

Если левые и правые классы смежности подгруппы совпадают, то она называется нормальной. Это свойство даёт возможность построить факторгруппу группы по нормальной подгруппе .

Литература

  • Курош А. Г. Теория групп. — 3-е изд. — М.: Наука, 1967. — 648 с.
  • Журавлёв Ю. И., Флёров Ю. А., Вялый М. Н. Дискретный анализ. Основы высшей алгебры. — 2-е изд. — М.: МЗ Пресс, 2007. — С. 24—25. — 224 с.
Эта страница в последний раз была отредактирована 3 января 2023 в 09:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).