Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Подвижность носителей заряда

Из Википедии — свободной энциклопедии

Подвижность носителей заряда — коэффициент пропорциональности между дрейфовой скоростью носителей и приложенным внешним электрическим полем. Определяет способность электронов и дырок в металлах и полупроводниках реагировать на внешнее воздействие. Размерность подвижности м2/(В·с) или см2/(В·с). Фактически подвижность численно равна средней скорости носителей заряда при напряженности электрического поля в 1 В/м. Стоит заметить, что мгновенная скорость может быть много больше дрейфовой. Понятие подвижности может применяться только при слабых электрических полях, когда выполняется линейность по электрическому полю и нет разогрева носителей, которое связано с квадратом электрического поля.

Однородная среда

В простейшем случае изотропной среды в качестве определения подвижности (данного типа носителей тока) можно записать:

где  — абсолютная величина дрейфовой скорости (средней скорости дрейфа носителей под действием данного поля), а  — абсолютная величина напряженности этого поля (важно, что неотрицательно даже при дрейфе носителей против поля — когда они отрицательно заряжены).

В случае однородной среды, не зависит от положения (внутри данной среды).

Дрейфовая скорость вместе с концентрацией носителей тока определяют ток (плотность тока) в среде:

И подвижность таким образом связана с проводимостью среды

и, соответственно, с её удельным сопротивлением:

(Эти формулы написаны для случая, когда электропроводность обусловлена одним типом носителей; в противном случае нужно суммировать по всем типам носителей:

— впрочем, во многих случаях один из типов носителей дает подавляющий вклад, тогда можно приближенно пользоваться формулой для единственного носителя, имея в виду этот главный тип).

В классических моделях, таких, как модель Друде, (достаточно хороших почти во всех отношениях в случае твердого тела лишь для описания массивных носителей со сравнительно малой подвижностью, например, ионов, но не для электронов в металле), дрейфовая скорость имеет порядок действительной скорости движения носителей. Для случаев же, подобных случаю электронов проводимости в металле, имеющих модуль скорости порядка скорости Ферми, дрейфовая скорость, гораздо меньшая, чем эта величина, на самом деле есть лишь векторное (с учётом знака) усреднение этих больших скоростей, с учётом концентрации, которая зависит от направления (см. Модель Лифшица); однако это ничуть не мешает формально использовать понимаемую так дрейфовую скорость так, как она используется в формулах здесь.

Для подвижности в классических моделях известно также следующее выражение, получаемое из кинетического уравнения Больцмана в приближении времени релаксации :

где  — эффективная масса носителей.

Тензорная запись

В анизотропной среде подвижность связывает компоненты дрейфовой скорости с компонентами электрического поля

Холловская подвижность

Указанная выше подвижность носителей заряда также называется дрейфовой подвижностью . Она отличается от холловской подвижности , которую можно определить с помощью эффекта Холла (см. Метод ван дер Пау).

,

где безразмерный параметр холловский фактор равен

 

Здесь  — время релаксации (по импульсам) носителей заряда,  — обозначают усреднение по распределению электронов по энергиям. Холл-фактор является атрибутом реального твёрдого тела и зависит от механизма рассеяния носителей: при рассеянии на ионах примеси ; при рассеянии на фононах ; в металлах и сильно вырожденных полупроводниках, а также в сильном магнитном поле, но не квантующем () [1].

Поверхностная подвижность

Основная статья: Поверхностная подвижность

Поверхностной подвижностью называется подвижность носителей, движущихся параллельно поверхности в приповерхностной области твердого тела, связанная со специфическими механизмами рассеяния, вызванными наличием поверхности раздела двух фаз.

Примечания

  1. Кучис, Е. В. Методы исследования эффекта Холла (рус.). — М.: Радио и связь, 1974. — С. 11—12. — 264 с. — ISBN 5256007343.


Эта страница в последний раз была отредактирована 23 января 2021 в 07:59.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).