Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Пло́тное мно́жество — подмножество пространства, точками которого можно сколь угодно хорошо приблизить любую точку объемлющего пространства. Формально говоря, плотно в , если всякая окрестность любой точки из содержит элемент из .

Определения

  • Множество называется всюду плотным, если оно плотно в

Замечание

Приведённое выше определение плотности множества эквивалентно любому из нижеперечисленных:

  • Множество плотно в тогда и только тогда, когда замыкание содержит , то есть . В частности, всюду плотно, если .
  • Множество плотно в тогда и только тогда, когда внутренность дополнения к не пересекается с , то есть . В частности, всюду плотно, если .

Примеры

См. также

Литература

  • Р. А. Александрян, Э. А. Мирзаханян. Общая топология — М: Высшая школа, 1979.
  • Келли Дж. Л. Общая топология — М.: Наука, 1968
  • Энгелькинг Р. Общая топология — М.: Мир, 1986
  • Виро О. Я., Иванов О. А., Харламов В. М., Нецветаев Н. Ю. Элементарная топология. Учебник в задачах (рус., англ.)
Эта страница в последний раз была отредактирована 17 октября 2019 в 11:11.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).