Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Определение параметров элементарной кристаллической ячейки в виде параллелепипеда с параметрами длины рёбер a, b, c и с углами между рёбрами α, β, γ

Постоя́нная решётки, или параметр решётки — размеры элементарной кристаллической ячейки кристалла. В общем случае элементарная ячейка представляет собой параллелепипед с различными длинами рёбер, обычно эти длины обозначают как a, b, c. Но в некоторых частных случаях кристаллической структуры дли́ны этих рёбер совпадают. Если к тому же выходящие из одной вершины рёбра равны и взаимно перпендикулярны, то такую структуру называют кубической. Структуру с двумя равными рёбрами, находящимися под углом 120 градусов, и третьим ребром, перпендикулярным им, называют гексагональной.

Принято считать что, параметры элементарной ячейки описываются 6 числами: 3 длинами рёбер и 3 углами между рёбрами, принадлежащими одной вершине параллелепипеда.

Например, элементарная ячейка алмаза — кубическая и имеет параметр решётки 0,357 нм при температуре 300 К.

В литературе обычно не приводят все шесть параметров решётки, только среднюю длину рёбер ячейки и тип решётки.

Размерность параметров решётки a, b, c в СИ — длина. Величину, ввиду малости, обычно приводят в нанометрах или ангстремах (1 Å = 0,1 нм).

Параметры решётки могут быть экспериментально определены методами рентгеноструктурного анализа (исторически первый метод, развитый в начале XX века) или, начиная с конца XX века, — атомно-силовой микроскопией. Параметр кристаллической решётки может использоваться в качестве природного эталона длины нанометрового диапазона.[1][2]

Объём элементарной ячейки

Объём элементарной ячейки можно вычислить, зная её параметры (длины и углы параллелепипеда). Если три смежных ребра ячейки представить в виде векторов, то объём ячейки V равен (с точностью до знака) тройному скалярному произведению этих векторов (то есть скалярному произведению одного из векторов на векторное произведение двух других). В общем случае

Для моноклинных решёток α = γ = 90°, и формула упрощается до

Для орторомбических, тетрагональных и кубических решёток угол β также равен 90°, поэтому[3]

Для тригональных (ромбоэдрических) решёток α = β = γ ≠ 90°, а также a = b = c, поэтому

Слоистые полупроводниковые гетероструктуры

Постоянство параметров решётки разнородных материалов позволяет получить слоистые, с толщиной слоёв в единицы нанометров сэндвичи разных полупроводников. Этот метод обеспечивает получение широкой запрещённой зоны во внутреннем слое полупроводника и используется при производстве высокоэффективных светодиодов и полупроводниковых лазеров.

Согласование параметров решётки

Параметры решётки важны при эпитаксиальном выращивании тонких монокристаллических слоёв другого материала на поверхности иного монокристалла — подложки. При значительной разнице параметров решётки материалов трудно получить монокристалличность и бездислокационность наращиваемого слоя. Например, в полупроводниковой технологии для выращивания эпитаксиальных слоёв монокристаллического кремния в качестве гетероподложки обычно используют сапфир (монокристалл оксида алюминия), так как оба имеют практически равные постоянные решётки, но с разным типом сингонии, у кремния — кубическая типа алмаза, у сапфира — тригональная.

Обыкновенно параметры решётки подложки и наращиваемого слоя выбирают так, чтобы обеспечить минимум напряжений в слое плёнки.

Другим способом согласования параметров решёток является метод формирования переходного слоя между плёнкой и подложкой, в котором параметр решётки изменяется плавно (например, через слой твёрдого раствора с постепенным замещением атомов вещества подложки атомами выращиваемой плёнки, так чтобы параметр решётки слоя твёрдого раствора у самой плёнки совпадал с этим параметром плёнки).

Например, слой фосфида индия-галлия с шириной запрещённой зоны 1,9 эВ может быть выращен на пластине арсенида галлия с помощью метода промежуточного слоя.

См. также

Примечания

  1. R. V. Lapshin. Automatic lateral calibration of tunneling microscope scanners (англ.) // Review of Scientific Instruments  (англ.) : journal. — USA: AIP, 1998. — Vol. 69, no. 9. — P. 3268—3276. — ISSN 0034-6748. — doi:10.1063/1.1149091. Архивировано 9 мая 2023 года.
  2. R. V. Lapshin. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode (англ.) // Applied Surface Science : journal. — Netherlands: Elsevier B. V., 2019. — Vol. 470. — P. 1122—1129. — ISSN 0169-4332. — doi:10.1016/j.apsusc.2018.10.149. Архивировано 15 июня 2023 года.
  3. Dept. of Crystallography & Struc. Biol. CSIC. 4. Direct and reciprocal lattices (4 июня 2015). Дата обращения: 9 июня 2015. Архивировано 4 мая 2021 года.
Эта страница в последний раз была отредактирована 1 января 2024 в 09:29.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).