Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Условное графическое изображение гептода с катодом косвенного накала на электрических принципиальных схемах

Гепто́д (также пентагри́д от др.-греч. πέντε — «пять», и англ. grid — «сетка») — электронная лампа с семью электродами: катодом, анодом и пятью сетками. Основное предназначение — преобразователь частоты в супергетеродинном радиоприёмнике.

Неоднозначность названия

Согласно международной терминологии, гептодом может именоваться любой электронный компонент с семью электродами. На самом деле под этим именем существуют два класса ламп.

Один из них — полностью независимый преобразователь, позволяющий выполнить гетеродин и смеситель, используя одну структуру электродов и имеет второе название «пентагрид» (переводится как «пятисеточная лампа»). В номенклатуре ламп СССР наиболее типичный пример — лампа 6А8.

Второй тип гептода рассчитан на использование отдельного гетеродина, для которого позже стали выпускать комбинированные лампы триод-гептод — в СССР 6И1П, 6И3П.

История

Появлению гептода предшествовало изобретение, в корне изменившее всю технику радиоприёма, — принцип супергетеродинного приёма.

Преобразование сигнала любой принимаемой частоты в некий неизменный сигнал промежуточной частоты резко повысило (по сравнению с приёмниками прямого усиления) избирательность и чувствительность — основные качественные показатели любого приёмника. Одновременно с переходом на супергетеродинный приём появилась потребность в специальных частотно-преобразовательных лампах с двойным управлением.

Преобразование сигнала принимаемой частоты в сигнал промежуточной частоты можно осуществлять двумя способами: по схеме совмещённого и по схеме отдельного гетеродина.

При совмещённой схеме функции гетеродина и смесителя могла осуществлять одна специальная пятисеточная лампа, в которой гетеродин и смеситель были включены как бы последовательно, то есть две ближайшие к катоду сетки образовывали гетеродинный триод, а следующие сетки входили в состав усилителя входного сигнала. Смешение же этих двух сигналов происходило за счёт того, что анодный ток обеих ламп оказывался общим и приблизительно равным произведению этих токов.

В схеме с отдельным гетеродином напряжение частоты гетеродина генерировалось специальным каскадом на триоде или пентоде, а смешение сигналов производилось в другой лампе с двумя управляющими сетками (пентоде или гексоде). Первоначально предпочтение отдавалось первому варианту как более экономичному (одна лампа с одним накаливаемым катодом вместо двух). Для этого и была разработана специальная пятисеточная лампа — пентагрид.


Число сеток у обеих ламп одинаково, однако нетрудно видеть, что назначение их различно. Первая, ближайшая к катоду сетка у обеих ламп является управляющей в составе генераторного триода — гетеродина. У пентагрида вторая сетка выполняет функцию анода того же триода, а у гептода этой сетки нет.

Следующим шагом было появление двух экранирующих сеток вместо одной. Это было вызвано тем, что у тетродов и пентодов была только одна управляющая сетка, которая отгораживалась от анода экранной сеткой.

В новой лампе — пентагриде — она так и сохранилась: это «нижняя» из двух экранных сеток. Но тогда вторая управляющая сетка оказалась рядом с анодом, то есть превращала смесительную часть лампы в обычный триод с присущим ему главным недостатком — большой проходной ёмкостью анод—сетка. Чтобы устранить его, между второй управляющей сеткой и анодом и была помещена дополнительная, вторая экранная сетка, соединенная внутри лампы с первой экранной сеткой, поскольку обе они выполняли одну функцию.

Недостатком такого пентагрида отсутствие антидинатронной сетки. Этот недостаток был устранён в гептодах, в которых имеется антидинатронная сетка, но удалена сетка, выполнявшая в пентагриде роль анода гетеродинного триода. А его роль стала выполнять объединенная экранная сетка.

В отличие от обычных схем, где экранная сетка по высокой частоте закорочена на «землю» конденсатором достаточно большой ёмкости, в данном схемном решении последовательно в цепь питания экранных сеток включена катушка обратной связи контура гетеродина (обеспечивающая положительную обратную связь по фазовому сдвигу), и тем самым генератора гетеродина.

И пентагриды, и гептоды использовались достаточно долго, выполняя функции частотно-преобразовательных ламп. Первый советский пентагрид типа СО-183 был выпущен ещё в 1930-x годах, а гептоды типа 6А2П использовались в вещательных приемниках вплоть до 1970-х годов.

Совмещение гетеродина и смесителя в одной лампе, а также сравнительно большая межсеточная ёмкость приводит к «просачиванию» сигнала гетеродина в антенну приёмника и, соответственно, излучению его в эфир, что в некоторых случаях (радиоприёмник, установленный на военном корабле или самолёте) позволяло запеленговать даже радиостанцию, работающую только на приём.

Пятисеточные лампы характеризуются рядом дополнительных параметров, которых не имеют другие типы ламп с меньшим количеством сеток. Прежде всего, это крутизна преобразования Sпр — отношение переменной составляющей анодного тока промежуточной частоты Iа пч к переменному напряжению ВЧ-сигнала на второй управляющей (сигнальной) сетке Uсигн. Иными словами, крутизна преобразования показывает, какую амплитуду тока промежуточной частоты создает напряжение сигнала, амплитудой 1 В при заданном переменном напряжении на сетке гетеродина.

Другое специфическое отличие пятисеточных ламп от триодов, тетродов и пентодов состоит в том, что для оценки их свойств недостаточно двух графических характеристик — анодной и сеточной. Это объясняется тем, что обычная анодная характеристика как функция напряжения на одной из управляющих сеток сильно изменяется не только в зависимости от напряжения на экранной сетке, но и от напряжения на второй управляющей сетке. Поэтому пятисеточные лампы, как правило, сопровождаются минимум четырьмя семействами графических характеристик.

Литература

  • Левитин Е. Пентагрид. // Радиофронт, 1934, № 22, с. 22-24
  • Гендин Г. С. Всё о радиолампах. — М.: Горячая линия-Телеком, 2002. — 296 с.: ил. — (Массовая радиобиблиотека; Вып. 1258).

Ссылки

Эта страница в последний раз была отредактирована 30 декабря 2022 в 20:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).