Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Пароциркониевая реакция

Из Википедии — свободной энциклопедии

Пароцирко́ниевая реа́кцияэкзотермическая химическая реакция между цирконием и водяным паром, которая идёт при высоких температурах. В частности, реакция может происходить в активной зоне ядерного реактора с водяным теплоносителем и/или замедлителем при её перегреве[1] в условиях контакта циркониевых конструкционных элементов с водой.

Сплавы циркония являются наиболее распространённым конструкционным материалом тепловыделяющих сборок, в виде которых используется ядерное топливо в реакторах. В случае тяжёлой аварии с нарушением отвода теплоты топливо может разогреться до больших температур за счёт остаточного тепловыделения остановленного реактора. В активной зоне даже некипящих реакторов при этом образуется пар, который по достижении 861 °C вступает в реакцию с цирконием. В результате образуется водород в количестве около 0,491 литра на грамм прореагировавшего циркония и выделяется большое количество тепла — 6530 кДж/кг[2].

Ход реакции

Реакция протекает в соответствии с уравнением:

При этом выделяется значительное количество теплоты: 6530 кДж/кг.

Реакция начинается примерно при 861 °C, а при 1200 °C начинает развиваться очень быстро, так как выделяющаяся теплота дополнительно разогревает цирконий, и становится самоподдерживающейся[1][2][3].

Для расчёта пароциркониевой реакции используется интегральная форма уравнения Бейкера — Джаста [4] (стр. 37):

[мг/см2]²,

где:

 — отношение массы циркония, вступившего в реакцию, [мг] к площади поверхности реакции [см2];
 — время, c;
 — температура поверхности реакции, К;
 кал/(моль·К) — универсальная газовая постоянная.

Скорость реакции существенно зависит от температуры, количества подводимого к реагирующей поверхности пара и времени реакции. Причём в реальных условиях количество подводимого пара значительно ниже, чем расчётное, так как подвод пара к поверхности затруднён. В реакции участвуют лишь близкие к поверхности слои пара, при этом образующийся в результате реакции водород препятствует подводу пара к поверхности. На поверхности образуется плёнка ZrO2, которая также тормозит реакцию[2].

Следствия

Помимо выделения водорода и тепла, реакция сопровождается потерей прочности оболочек твэлов и уменьшением их первоначальной толщины за счёт окисления циркония. Примерно за 10—12 минут после начала самоподдерживающейся пароциркониевой реакции оболочка твэла окисляется на толщину 0,10—0,15 мм с разогревом до температуры её плавления.

При экспериментах уже на ранней стадии наблюдалась серьёзная деформация твэлов, при небольшом превышении температуры плавления циркония в каналах теплоносителя образуются пробки (блокады).

Даже при сравнительно небольшой скорости протекания реакции, количество выделяющегося в её результате тепла сравнимо с остаточным тепловыделением остановленного реактора. Таким образом, усиление нагрева топлива в результате реакции очень существенно[2].

В результате вступления в реакцию большой части циркония может образовываться количество водорода, исчисляемое тысячами кубометров. Это чрезвычайно опасно, как с точки зрения взрыво- и пожароопасности, так и с точки зрения образования в контуре реакторной установки газовых пузырей, препятствующих циркуляции теплоносителя, что может усугубить аварию из-за прекращения отведения тепла от топлива[5].

Аварийные системы и аварии

Возникновение пароциркониевой реакции возможно лишь при перегреве активной зоны, это является общим вопросом безопасности реакторов. В случае же возникновения такой тяжёлой аварийной ситуации, существуют системы безопасности.

Основным средством недопущения образования в контуре реакторной установки газовых пузырей являются системы аварийного паро- газоудаления. На ТМI-2 такая система отсутствовала, поэтому скопившиеся в различных частях оборудования и в самом реакторе неконденсирующиеся газы, в основном водород, воспрепятствовали возникновению в контуре естественной циркуляции после вынужденного выключения главных циркуляционных насосов, в результате чего авария переросла в крайне тяжёлую[6].

Другой важной системой безопасности, пассивной, является гермооболочка. У водо-водяных реакторов она очень большого размера, десятки тысяч м³, поэтому достичь взрывоопасной концентрации, при сбросе водорода из реактора и другого оборудования, в ней крайне затруднительно. Во время аварии на ТМI-2, например, несмотря на треть окислившегося топлива, в гермооболочке наблюдались лишь локальные возгорания водорода, которые не привели к серьёзным последствиям. В кипящих реакторах размер гермооболочки существенно меньше. Это объясняется тем, что проблема основной аварии, на которую рассчитываются гермооболочки — авария с потерей теплоносителя — решается в гермооболочках кипящих реакторов по-другому, с помощью объёмного бака-барботера, куда сбрасывается пар в случае аварии. В ранних конструкциях контейнментов (Mark 1, Mark 2) кипящих реакторов для решения проблемы скопления водорода сухая шахта реактора заполняется инертным газом (например, чистым азотом), в более поздних, начиная с Mark 3 — оснащается системой дожигания водорода[7][8]. При аварии на АЭС Фукусима пострадали энергоблоки с контейнментом типа Mark 1. Скопление водорода во вторичной гермооболочке привело к взрыву в ней на энергоблоках 1 и 3. На энергоблоке 2 взрыв произошёл в районе бака-барботера. На энергоблоке 4 взрыв водорода произошёл в районе бассейна выдержки топлива.

Известным нововведением, предназначенным для решения проблемы скопления водорода при тяжёлых авариях, являются каталитические рекомбинаторы водорода (пассивная система безопасности). Их можно устанавливать и на уже работающих блоках (на множестве по всему миру они уже установлены), в обязательный набор элементов они входят в новых проектах. Рекомбинаторы — небольшие устройства, которые во множестве устанавливаются по всему гермообъёму и обеспечивают снижение концентрации водорода при авариях с его выделением. Рекомбинаторы не требуют источников энергии и команд на включение — при достижении небольшой концентрации водорода (0,5—1,0 %) процесс его поглощения рекомбинаторами начинается самопроизвольно[9][10].

Примечания

  1. 1 2 Karl-Heinz Neeb. The radiochemistry of nuclear power plants with light water reactors. — Berlin, New York: Walter de Gruyter, 1997. — 733 p. — ISBN 3-11-013242-7.
  2. 1 2 3 4 Самойлов О. Б., Усынин Г. Б., Бахметьев А. М. Безопасность ядерных энергетических установок. — М.: Энергоатомиздат, 1989. — 280 с. — 5900 экз. — ISBN 5-283-03802-5.
  3. Safety and security of commercial spent nuclear fuel storage: public report. — Washington, D.C.: National Academies Press, 2006. — 75 p. — ISBN 0-309-16519-9.
  4. Louis Baker, Jr. and Louis C. Just. Studies of metal-water reascions at high temperature III Experimental and theoretical studies of the zirconium-water reactions. Argonne National Laboratory (май 1962). Архивировано 9 января 2016 года.
  5. Libmann J. Elements of nuclear safety. — France: Les Éditions de Physique, 1996. — 543 p. — ISBN 2-86883-286-5.
  6. J. Samuel Walker. Three Mile Island: A Nuclear Crisis in Historical Perspective. — Berkeley and Los Angeles: University of California Press, 2004. — 305 p. — ISBN 0-520-24683-7.
  7. George A. Greene. Heat transfer in nuclear reactor safety. — San Diego: Academic Press, 1997. — 357 p. — ISBN 0-12-020029-5.
  8. Jan Beyea, Frank Von Hippel. Containment of a reactor meltdown (англ.) // Bulletin of the Atomic Scientists. — 1982. — Vol. 38, no. 7. — P. 52—59. — ISSN 0096-3402.
  9. Saito T., Yamashita J., Ishiwatari Y., Oka. Y. Advances in Light Water Reactor Technologies. — New York, Dordrecht, Heidelberg, London: Springer, 2011. — 295 p. — ISBN 978-1-4419-7100-5.
  10. Келлер В. Д. Пассивные каталитические рекомбинаторы водорода для атомных электростанций // Теплоэнергетика. — М.: МАИК «Наука/Интерпериодика», 2007. — № 3. — С. 65—68. — ISSN 0040-3636. Архивировано 6 апреля 2019 года.
Эта страница в последний раз была отредактирована 10 ноября 2023 в 07:14.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).