Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Парадо́кс субмари́ны (иногда называемый парадо́ксом Са́ппли) — мысленный эксперимент в рамках теории относительности Эйнштейна, приводящий к трудноразрешимому парадоксу.

Согласно специальной теории относительности Эйнштейна с точки зрения неподвижного наблюдателя размеры объекта, движущегося со скоростью, близкой к скорости света, уменьшаются в направлении движения. Однако с точки зрения объекта, напротив, именно неподвижные наблюдатели кажутся короче.

Если предположить, что некая подлодка движется под водой с околосветовой скоростью, неподвижным наблюдателям она покажется сжавшейся. Плотность её, соответственно, должна увеличиться, что непременно потянет её на дно. Но со стороны объекта — находящегося на борту подлодки экипажа — всё воспринималось бы с точностью до наоборот: «бегущая» вода вокруг них сжимается, а значит становится более плотной и выталкивает лодку на поверхность.

В 1989 году Джеймс Саппли разрешил парадокс с использованием специальной теории относительности. В честь него эту задачу называют также «Парадокс Саппли».

В 2003 году бразилец Джордж Матсас из Сан-Паулу рассмотрел этот парадокс, используя общую теорию относительности. У обоих учёных вывод был одинаков: подлодка будет погружаться.

Учёные объясняют парадокс по-разному. На слои и на лодку действует масса факторов, требующих обязательного учёта для успешного решения этого парадокса. Здесь и увеличение воздействия гравитации на лодку, которая потянет её вниз, и искажение формы слоёв воды вверх (они «задираются» с точки зрения подлодки из-за нарушения одновременности начала ускорения).

Суть решения

Всё рассмотрение можно вести в рамках специальной теории относительности, переходя в движущуюся с ускорением систему отсчёта (в которой удобно ввести координаты Риндлера). Проще, однако, рассмотреть всё из инерциальной системы отсчёта, где ускорение жидкости вызывается какой-либо причиной, например, жидкость электрически заряжена и находится в электрическом поле, либо её подпирает ускоренно движущаяся стенка. Важно, что эта причина не ускоряет подлодку — например, подводная лодка нейтральна, либо не контактирует со стенкой. Ограничимся начальным моментом времени, когда жидкость покоится, а скорость подлодки равна 0 для «неподвижного» случая, и (с соответствующим ) для «движущегося».

С точки зрения инерциальных наблюдателей ускорение подводной лодки (не важно, в покое или в движении) вызывается передачей импульса от молекул жидкости к молекулам подводной лодки — это микроскопическое определение давления. Эта передача пропорциональна площади поверхности жидкости, контактирующей с подлодкой, и, соответственно, уменьшается в раз при сокращении подводной лодки из-за её движения. Поэтому передача импульса равна для «неподвижной» подлодки, и для «движущейся». Теперь несложно вычислить ускорения, получаемые подлодками в начальный момент: для «неподвижной» подлодки это будет величина, по условию совпадающая с ускорением жидкости

где  — масса подлодки, а для «движущейся»

где учтено, что подводная лодка ускоряется перпендикулярно направлению своего движения. Как видно, ускорение «движущейся» подлодки меньше, чем покоящейся — она затонет.

Теперь рассмотрим ситуацию в системе отсчёта, где подлодка «неподвижна», но двигается жидкость. Плотность жидкости из-за её релятивистского сокращения возрастёт, что увеличит силу Архимеда в раз, то есть передача импульса станет равна , что вызовет ускорение подлодки

Однако при переходе в эту инерциальную систему отсчёта ускорение жидкости также изменится. Выделив в жидкости некоторый уровень, имеем в исходной системе его уравнение движения , а в новой, согласно преобразованиям Лоренца для месторасположения подводной лодки , получаем то есть ускорение уровня жидкости, измеряемое с подлодки, равно . Оно больше ускорения подлодки — она затонет.

Точно такой же результат получается, если взять правильное уравнение гиперболического движения вместо приближённого, верного лишь вблизи . Есть ещё некоторый эффект, связанный с нарушением одновременности ускорения различных частей жидкости относительно системы отсчёта подлодки, но он может быть сведён к пренебрежимо малой величине выбором малого ускорения и/или размера подлодки в направлении движения (смотри работу Матсаса для подробного разбора).

Ссылки

Эта страница в последний раз была отредактирована 23 октября 2021 в 18:01.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).