Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Отражение (геометрия)

Из Википедии — свободной энциклопедии

Оптическое отражение в реке прибрежных деревьев
Оптическое отражение в реке прибрежных деревьев
Оптическое отражение в реке прибрежных зданий
Оптическое отражение в реке прибрежных зданий

Отражение, зеркальное отражение или зеркальная симметрия — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью).

Термин зеркальная симметрия употребляется также для описания соответствующего типа симметрии объекта, то есть, когда объект при операции отражения переходит в себя.

Это математическое понятие описывает соотношение в оптике объектов и их (мнимых) изображений при отражении в плоском зеркале, а также многие законы симметрии (в кристаллографии, химии, физике, биологии и т. д., а также в искусстве и искусствоведении)

Осевая симметрия

Композиция двух отражений относительно несовпадающих параллельных осей даёт параллельный перенос.
Композиция двух отражений относительно несовпадающих параллельных осей даёт параллельный перенос.
Композиция двух отражений относительно непараллельных осей даёт поворот.
Композиция двух отражений относительно непараллельных осей даёт поворот.

В размерности 2 (то есть на плоскости) гиперплоскость представляет собой прямую, говорят об осевой симметрии или симметрии относительно прямой.

Для фигуры, переходящей в себя при осевой симметрии, прямая, образованная неподвижными точками движения, называется осью симметрии этой фигуры. Примером оси симметрии отрезка является его серединный перпендикуляр.

Любое движение плоскости можно представить в виде композиции не более чем трёх осевых симметрий.

См. также


Эта страница в последний раз была отредактирована 19 января 2021 в 14:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).