Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Бинарное отношение на множестве называется отношением нестрогого частичного порядка (отношением порядка, отношением рефлексивного порядка), если имеют место

Множество , на котором введено отношение частичного порядка, называется частично упорядоченным. Отношение нестрогого частичного порядка часто обозначают знаком .

Варианты

Отношение частичного порядка называется линейным порядком, если выполнено условие

.

Множество , на котором введено отношение линейного порядка, называется линейно упорядоченным, или цепью.

Отношение , удовлетворяющее только условиям рефлексивности и транзитивности, называется предпорядком, или квазипорядком.

Строгий порядок

Если условие рефлексивности заменить на условие антирефлексивности:

,

то получим определение строгого, или антирефлексивного частичного порядка (обозначается обычно символом ).

Замечание. Одновременная антирефлексивность и транзитивность отношения влечёт асимметричность, которое является более сильным условием, чем антисимметричность. Поэтому отношение является отношением строгого порядка тогда и только тогда, когда оно антирефлексивно и транзитивно.

В общем случае, если  — транзитивное, антисимметричное отношение, то

 — рефлексивный порядок
 — строгий порядок.

Примеры

  • На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого.
  • Отношение делимости на множестве натуральных чисел является отношением нестрогого порядка.

Размерность Душника — Миллера

Размерность Душника — Миллера (англ.) (иногда называемая просто размерность) частичного порядка — это наименьшее количество отношений линейного порядка, пересечение которых равно данному частичному порядку. Задача распознавания того, превосходит ли размерность данного конечного частичного порядка число принадлежит к классу P при но является NP-полной при [1]

История

Знаки и изобретены Хэрриотом.

См. также

Ссылки

  1. Yannakakis, Mihalis (1982), «The complexity of the partial order dimension problem», SIAM Journal on Algebraic and Discrete Methods 3 (3): 351—358
Эта страница в последний раз была отредактирована 20 января 2021 в 01:00.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).