Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Осева́я симме́три́я — тип симметрии, имеющий несколько отличающихся определений:

  • Отражение. В евклидовой геометрии осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Отсюда следует, что любой точке соответствует точка, находящаяся на том же расстоянии от оси симметрии, и лежащая на одной прямой с исходной точкой и их общей проекцией на ось симметрии[1][2]. Например, плоская фигура прямоугольник в пространстве осесимметрична и имеет 3 оси симметрии (две диагонали — в плоскости фигуры; если это не квадрат с двумя дополнительными осями — медиатрисами сторон), а параллелограмм общего вида имеет одну ось симметрии (проходящую через центр перпендикулярно плоскости).
  • Вращательная симметрия[3]. В естественных науках под осевой симметрией понимают вращательную симметрию[4] (другие термины — радиальная, аксиальная (англ. axial – осевой), поворотная, лучевая симметрии) относительно поворотов вокруг прямой. При этом тело (фигуру, задачу, организм) называют осесимметричными, если они переходят в себя при любом (например, малом) повороте вокруг этой прямой. В этом случае прямоугольник не будет осесимметричным телом, но, например, конус будет.

Применительно к плоскости эти два вида симметрии совпадают (считаем, что ось тоже принадлежит этой плоскости).

В кристаллографии вводят также (осевую) симметрию некоторого порядка[5]:

  • Осевая симметрия n-го порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси. Описывается группой Zn.
    • Тогда симметрия в первом смысле (см. выше) является осевой симметрией второго порядка, а во втором — ∞-го порядка, так как поворот на любой сколь угодно малый угол приводит к совмещению фигуры с самой собой. Примеры: шар, цилиндр, конус.
    • Оси симметрии 2-го, 3-го, 4-го, 6-го и даже 5-го порядка (кристаллы с непериодическим пространственным расположением атомов (мозаика Пенроуза)) можно наблюдать на примере кристаллов.
  • Зеркально поворотная осевая симметрия n-го порядка — поворот на 360°/n и отражение в плоскости, перпендикулярной данной оси.

Оси симметрии порядка выше 2-го называются осями симметрии высшего порядка.

См. также

Примечания

  1. Е. Потоскуев. Преобразования пространства // «Первое сентября»/ «Математика». — 2009. — № 02.
  2. Большой энциклопедический справочник. — М.: Русское энциклопедическое товарищество, 2003. — С. 64. — ISBN 5-901227-33-6.
  3. коллектив авторов. Новейший справочник школьника: [5-11-й класс]. — ООО Группа компаний "РИПОЛ классик", 2011. — С. 71. — ISBN 978-5-386-03691-1.
  4. [dic.academic.ru/dic.nsf/enc_physics/2747#СИММЕТРИЯ%20КРИСТАЛЛОВ0 Симметрия кристаллов] // Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
  5. [dic.academic.ru/dic.nsf/enc_geolog/15139 Ось симметрии] // Геологический словарь: в 2-х томах. — М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978.

Литература

Ссылки

Эта страница в последний раз была отредактирована 1 июня 2020 в 22:02.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).