Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Ортогональная система координат

Из Википедии — свободной энциклопедии

Ортогональными называются криволинейные координаты, в которых метрический тензор имеет диагональный вид.

,

где  - размерность пространства. Скалярный фактор

равен корню квадратному от диагональных компонент метрического тензора, или длине локального базисного вектора .

В ортогональных системах координат координатные поверхности ортогональны друг другу. В частности, в декартовой системе координат ортогональны друг другу координатные оси , и .

Выбор той или иной системы ортогональных координат определяется симметрией системы. Например, при решении задачи о распространении электромагнитной волны от точечного источника выгодно пользоваться сферической системой координат; при решении задачи о колебании мембраны предпочтительней цилиндрическая система координат.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    3 928
    63 886
    13 629
  • Ортогональные пользовательские системы координат ПСК в Автокад 3D
  • Как разложить вектор по базису - bezbotvy
  • AutoCAD - Пользовательская система координат (ПСК и ДПСК)

Субтитры

Математические преобразования

Базисные векторы

В ортогональных системах скалярное произведение базисных векторов равно:

В большинстве случаев используют нормированные базисные векторы, для которых .

Для нормированных базисных векторов , где  — символ Кронекера.

Скалярное произведение

Скалярное произведение векторов в ортогональных системах вычисляется по формуле:

.
Эта страница в последний раз была отредактирована 3 ноября 2022 в 18:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).