Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Пример траектории от Земли к орбите Лиссажу вокруг точки Лагранжа L2 в системе Солнце-Земля. На нижней части иллюстрации, представляющей вид сбоку, Земля и Луна убраны для лучшего обзора траектории.
Пример траектории от Земли к орбите Лиссажу вокруг точки Лагранжа L2 в системе Солнце-Земля. На нижней части иллюстрации, представляющей вид сбоку, Земля и Луна убраны для лучшего обзора траектории.

Орбита Лиссажу — квазипериодическая орбитальная траектория, по которой тело может двигаться вокруг точки Лагранжа в рамках задачи трёх тел без включения двигателей. Орбиты Ляпунова вокруг точек Лагранжа являются кривыми, лежащими в одной плоскости с двумя главными телами в системе трёх тел. Орбиты Лиссажу, напротив, включают участки как в этой плоскости, так и в перпендикулярной к ней, и следуют кривым Лиссажу. Гало-орбиты также включают компоненты в перпендикулярной плоскости, но гало-орбиты, в отличие от орбит Лиссажу, являются периодическими.[1]

На практике, любая орбита вокруг точек Лагранжа L1, L2, L3 динамически неустойчива, и малые возмущения орбиты со временем возрастают.[2] В результате космический аппарат должен включать двигатели для коррекции орбиты. В отсутствие других воздействий орбиты вокруг точек L4 и L5 (при отношении масс главных тел более 25) устойчивы, причём в случае возникновения отклонений от траектории возникает сила, возвращающая тело на орбиту вблизи точки Лагранжа.[3] Такие орбиты могут всё же быть выведены из состояния устойчивости при наличии поблизости других массивных тел. Было выявлено, что точки L4 и L5 в системе Земля-Луна будут устойчивы в течение миллиардов лет даже при учёте возмущений от Солнца; но при учёте возмущений от планет орбиты вокруг этих точек могут существовать только в течение нескольких миллионов лет.[4]

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    1 088
    2 139 258
    17 265
  • Сергей Аксенов: "Использование точек либрации в проектировании космических миссий"
  • Капля воды и ртути.
  • Вынужденные колебания. Резонанс | Физика 11 класс #9 | Инфоурок

Субтитры

Космические аппараты, использующие орбиты Лиссажу

Несколько космических миссий используют орбиты Лиссажу: ACE в точке Лагранжа L1 системы Солнце-Земля,[5]SOHO в точке Лагранжа L1 системы Солнце-Земля, DSCOVR в точке Лагранжа L1 системы Солнце-Земля,[6] WMAP в точке Лагранжа L2 системы Солнце-Земля[7] и космический аппарат Genesis, исследовавший солнечные частицы, в точках Лагранжа L1 и L2[8].

14 мая 2009 года Европейское космическое агентство (ЕКА) осуществило запуск обсерваторий Herschel и Planck, находящихся на орбитах Лиссажу вокруг точки L2 системы Солнце-Земля[9]. Миссия Gaia также использует орбиту Лиссажу вокруг точки L2 системы Солнце-Земля[10].

В 2011 году НАСА перевело два из аппаратов THEMIS с орбиты вокруг Земли на орбиту вокруг Луны через две орбиты Лиссажу вокруг точек L1 и L2 системы Земля-Луна[11]. Китайский лунный модуль Чанъэ-2 8 июня 2011 года покинул лунную орбиту и был переведён на орбиту Лиссажу вокруг точки L2 системы Солнце-Земля до середины 2012 года, после чего модуль отправился к астероиду (4179) Таутатис[12].

Появления в литературе

В научно-фантастическом романе 2005 года «Солнечная Буря» Артура Кларка и Стивена Бакстера в космосе построен огромный щит для защиты Земли от смертельной солнечной бури. Там описано, что щит находился на орбите Лиссажу на L1. В этой истории группа богатых и могущественных людей прячется напротив щита на L2, чтобы быть защищенным от солнечной бури щитом, Землей и Луной.

Примечания

  1. Koon, Wang Sang (2000). "Dynamical Systems, the Three-Body Problem, and Space Mission Design". International Conference on Differential Equations: 1167–1181, Berlin: World Scientific. 
  2. ESA Science & Technology: Orbit/Navigation. European Space Agency (14 июня 2009). Дата обращения: 12 июня 2009.
  3. Vallado, David A. Fundamentals of Astrodynamics and Applications (англ.). — 3. — Springer New York, 2007. — ISBN 978-1-881883-14-2.
  4. «Solar and planetary destabilization of the Earth-Moon triangular Lagrangian points» by Jack Lissauer and John Chambers, Icarus, vol. 195, issue 1, May 2008, pp. 16-27.
  5. Advanced Composition Explorer (ACE) Mission Overview, Caltech, retrieved 2014-09-06.
  6. SpaceX Falcon 9 successfully launches the DSCOVR spacecraft, NASA, retrieved 2015-08-05.
  7. WMAP Trajectory and Orbit, NASA, retrieved 2014-09-06.
  8. Genesis: Lissajous Orbit Insertion, NASA, retrieved 2014-09-06.
  9. Herschel: Orbit/Navigation. ESA. Дата обращения: 15 мая 2006.
  10. Gaia's Lissajous Type Orbit (недоступная ссылка). ESA. Дата обращения: 15 мая 2006. Архивировано 18 марта 2017 года.
  11. ARTEMIS: The First Mission to the Lunar Libration Orbits
  12. 嫦娥二号有望探索"拉格朗日点"-科技-人民网
Эта страница в последний раз была отредактирована 5 апреля 2021 в 05:07.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).