Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Оператор Лапласа — Бельтрами

Из Википедии — свободной энциклопедии

Опера́тор Лапла́са — Бельтра́ми (называется иногда оператором Бельтра́ми — Лапла́са или просто оператором Бельтра́ми) — дифференциальный оператор второго порядка, действующий в пространстве гладких (или аналитических) функций на римановом многообразии .

В координатах где оператор Лапласа — Бельтрами задается следующим образом. Пусть — матрица метрического тензора риманова многообразия, — обратная матрица и , тогда оператор Лапласа — Бельтрами имеет вид

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    424
    13 709
    419
  • Оператор Лапласа
  • Differential Equations 33 : Laplacian in Spherical Co-ordinates Derivation
  • И.С.Красильщик. Линейные дифференциальные операторы над коммутативными алгебрами. Лекция 1.

Субтитры

Примеры

  • В случае, когда — область в евклидовом пространстве со стандартной метрикой — единичная матрица, оператор Лапласа — Бельтрами (*) превращается (с точностью до знака) в оператор Лапласа.
  • Пусть и метрический тензор имеет вид тогда формула (*) принимает вид
  • Дифференциальное уравнение с частными производными второго порядка где оператор задан формулой (**), разрешимо, если функции аналитические или достаточно гладкие. Этот факт используется для доказательства существования локальных изометрических (конформных) координат на поверхности , т. е. доказательства того, что каждое двумерное риманово многообразие локально конформно эквивалентно евклидовой плоскости.[1]

Литература

  • Розенблюм Г. В., Соломяк М. З., Шубин М. А. Спектральная теория дифференциальных операторов, — Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 64, ВИНИТИ, М., 1989.
  • Трев Ф. Введение в теорию псевдодифференциальных операторов и интегральных операторов Фурье, — М., Мир, 1984.
  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия (методы и приложения), — Любое издание.

Примечания

  1. Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия (методы и приложения), гл. 2, параграф 13.
Эта страница в последний раз была отредактирована 19 марта 2019 в 08:15.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).