Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Оператор Д’Аламбера (оператор Даламбера, волновой оператор, даламбертиан) — дифференциальный оператор второго порядка

где  — оператор Лапласа,  — постоянная. Иногда оператор пишется с противоположным знаком.

Имеет в декартовых координатах вид:

позволяющий прямое обобщение на любую конечную размерность пространства — как больше, так и меньше трёх (такое обобщение носит также название оператора Д’Аламбера, с добавлением, если это не ясно из контекста, «-мерный»).


В случае вектора оператор Даламбера приобретает вид:

[1], где - вектор,

Назван по имени Ж. Д’Аламбера (J. D’Alembert, 1747), который рассматривал его простейший вид при решении одномерного волнового уравнения.

Применяется в электродинамике, акустике и других задачах распространения волн (преимущественно линейных). Оператор Д’Аламбера (соответствующей размерности) входит в волновое уравнение любой размерности, составляя его основу, а также в уравнение Клейна — Гордона — Фока.

Нетрудно увидеть, что оператор Д’Аламбера есть обобщение оператора Лапласа на случай пространства Минковского.

Энциклопедичный YouTube

  • 1/2
    Просмотров:
    4 129
    483
  • 72. Чирцов А.С. | Свет и уравнения Максвелла. Уравнение Д'Аламбера. Операторы Лапласа и Д'Аламбера.
  • Даламбериан 🔲 – оператор Даламбера

Субтитры

Запись в криволинейных координатах

Оператор Д’Аламбера в сферических координатах:

в цилиндрических координатах:

в общих криволинейных координатах (для пространства-времени):

где  — определитель матрицы , составленной из коэффициентов метрического тензора .

Примечания

  1. Волновое уравнение // Савельев И. В. Курс общей физики. Том II. — С. 398.

Литература

Эта страница в последний раз была отредактирована 12 апреля 2024 в 20:45.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).