Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Правильный октаэдр
(вращающаяся модель)

(вращающаяся модель)
Тип правильный многогранник
Комбинаторика
Элементы
8 граней
12 рёбер
6 вершин
Χ = 2
Грани правильные треугольники
Конфигурация вершины 4.4.4
Двойственный многогранник куб
Классификация
Обозначения
  • O
  • aT
Символ Шлефли
  • или
Символ Витхоффа[en] 4 | 2 3
Диаграмма Дынкина CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Группа симметрии
Группа вращения
Количественные данные
Двугранный угол
Телесный угол при вершине ср
Логотип Викисклада Медиафайлы на Викискладе

Окта́эдр (греч. οκτάεδρον от οκτώ «восемь» + έδρα «основание») — многогранник с восемью гранями.

Пра́вильный окта́эдр является одним из пяти выпуклых правильных многогранников[1], так называемых платоновых тел; его грани — восемь равносторонних треугольников. Правильный октаэдр —

Октаэдр — трёхмерный вариант более общего понятия гипероктаэдр.

Правильный октаэдр

Правильный октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.

Размеры

Если длина ребра октаэдра равна а, то радиус сферы, описанной вокруг октаэдра, равен:

,

радиус вписанной в октаэдр сферы может быть вычислен по формуле:

двугранный угол: , где .

Радиус полувписанной сферы, которая касается всех рёбер, равен

Ортогональные проекции

Октаэдр имеет четыре специальные ортогональных проекции, центрированные ребром, вершиной, гранью и нормалью к грани. Второй и третий случай соответствуют плоскостям Коксетера B2 и A2.

Ортогональные проекции
Центрированы Ребром Нормалью
к грани
Вершиной Гранью
Образ
Cube t2 e.png
Cube t2 fb.png
3-cube t2 B2.svg
3-cube t2.svg
Проективная
симметрия
[2] [2] [4] [6]

Сферическая мозаика

Октаэдр можно представить, как сферическую мозаику и спроецировать на плоскость с помощью стереографической проекции. Эта проекция конформна, сохраняет углы, но не длины и площадь. Отрезки на сфере отображаются в дуги окружностей на плоскости.

Uniform tiling 432-t2.png
Octahedron stereographic projection.png

треугольно-центрированная
Ортогональная проекция Стереографическая проекция

Декартовы координаты

Октаэдр с длиной ребра может быть помещён в начало координат, так что его вершины будут лежать на осях координат. Декартовы координаты вершин тогда будут

(±1, 0, 0);
(0, ±1, 0);
(0, 0, ±1).

В x-y-z прямоугольной системе координат октаэдр с центром в точке (a, b, c) и радиусом r — это множество всех точек (x, y, z), таких, что

Площадь и объём

Площадь полной поверхности правильного октаэдра с длиной ребра a равна

Объём октаэдра (V) вычисляется по формуле:

Таким образом, объём октаэдра в четыре раза больше объёма тетраэдра с той же длиной ребра, в то время как площадь поверхности вдвое больше (поскольку поверхность состоит из 8 треугольников, а у тетраэдра — из четырёх).

Если октаэдр растянуть, чтобы выполнялось равенство:

формулы для поверхности и объёма превращаются в:

Кроме того, тензор моментов инерции растянутого октаэдра будет равен:

Он сводится к уравнению для правильного октаэдра, когда:

Геометрические связи

Октаэдр представляет собой пересечение двух тетраэдров
Октаэдр представляет собой пересечение двух тетраэдров

Внутренняя (общая) часть конфигурации из двух двойственных тетраэдров является октаэдром, а сама эта конфигурация называется звёздчатым октаэдром (лат.: stella octangula). Конфигурация является единственной звёздчатой формой октаэдра. Соответственно, правильный октаэдр является результатом отсечения от правильного тетраэдра четырёх правильных тетраэдров с половиной длины ребра (то есть полного усечения тетраэдра). Вершины октаэдра лежат на серединах рёбер тетраэдра и октаэдр связан с тетраэдром тем же образом, как кубооктаэдр и икосододекаэдр связаны с остальными платоновыми телами. Можно разделить рёбра октаэдра в отношении золотого сечения для определения вершин икосаэдра. Для этого следует расположить вектора на рёбрах, так, чтобы все грани были окружены циклами. Затем делим каждое ребро в золотом отношении вдоль векторов. Полученные точки являются вершинами икосаэдра.

Октаэдры и тетраэдры[en] можно чередовать, чтобы построить однородные относительно вершин, рёбер и граней соты, которые Фуллер назвал октетной связкой[en]. Это единственные соты, позволяющие регулярную укладку в кубе, и они являются одним из 28 видов выпуклых однородных сот[en].

Октаэдр уникален среди платоновых тел в том, что только он имеет чётное число граней при каждой вершине. Кроме того, это единственный член этой группы, который имеет плоскости симметрии, не пересекающие ни одну грань.

Если использовать стандартную терминологию многогранников Джонсона, октаэдр можно назвать квадратной бипирамидой. Усечение двух противоположных вершин приводит к усечённой бипирамиде[en].

Октаэдр является 4-связным. Это значит, что нужно удалить четыре вершины, чтобы разъединить оставшиеся. Это один из всего лишь четырёх 4-связных симплициальных хорошо покрытых многогранников, что означает, что все наибольшие независимые множества вершин имеют один и тот же размер. Другие три многогранника с этим свойством — пятиугольная бипирамида, плосконосый двуклиноид и нерегулярный многогранник с 12 вершинами и 20 треугольными гранями[2].

  • Октаэдр можно вписать в тетраэдр, притом четыре из восьми граней октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести ребер тетраэдра.
  • Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.

Однородное раскрашивание и симметрия

Имеется 3 однородных раскрашивания[en] октаэдра, названных по их цветам граней: 1212, 1112, 1111.

Группой симметрии октаэдра является Oh с порядком 48, трёхмерная гипероктаэдральная группа[en]. В подгруппы этой группы входят D3d (порядка 12), группа симметрии треугольной антипризмы, D4h (порядка 16), группа симметрии квадратной бипирамиды, и Td (порядка 24), группа симметрии полностью усечённого тетраэдра. Эти симметрии можно подчеркнуть путём различного раскрашивания граней.

Название Октаэдр Полностью
усечённый

тетраэдр
(Тетратетраэдр)
Треугольная антипризма Квадратная бипирамида Ромбическая бипирамида
Рисунок
(Раскраска граней)
Uniform polyhedron-43-t2.png

(1111)
Uniform polyhedron-33-t1.png

(1212)
Trigonal antiprism.png

(1112)
Square bipyramid.png

(1111)
Rhombic bipyramid.png

(1111)
Диаграмма Коксетера CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel split1.pngCDel nodes.png CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.png
Символ Шлефли {3,4} r{3,3} s{2,6}
sr{2,3}
ft{2,4}
{ } + {4}
ftr{2,2}
{ } + { } + { }
Символ Витхоффа[en] 4 | 3 2 2 | 4 3 2 | 6 2
| 2 3 2
Симметрия Oh, [4,3], (*432) Td, [3,3], (*332) D3d, [2+,6], (2*3)
D3, [2,3]+, (322)
D4h, [2,4], (*422) D2h, [2,2], (*222)
Порядок 48 24 12
6
16 8

Развёртки

Существует одиннадцать вариантов развёртки октаэдра[3].

Двойственность

Октаэдр двойственен кубу.

Dual Cube-Octahedron.svg

Огранка

Однородный тетрагемигексаэдр является огранкой с тетраэдральной симметрией правильного октаэдра, сохраняющая расположение рёбер[en] и вершин[en]. Огранка имеет четыре треугольных грани и 3 центральных квадрата.

Uniform polyhedron-33-t1.png

Октаэдр
Tetrahemihexahedron.png

тетрагемигексаэдр

Неправильные октаэдры

Следующие многогранники комбинаторно эквивалентны правильному октаэдру. Они все имеют шесть вершин, восемь треугольных граней и двенадцать рёбер, что соответствует один к одному параметрам правильного октаэдра.

  • Треугольные антипризмы — две грани представляют собой равносторонние треугольники, лежащие в параллельных плоскостях и имеющие общую ось симметрии. Остальные шесть треугольников равнобедренные.
  • Четырёхугольные бипирамиды, в которых по меньшей мере один экваториальный четырёхугольник лежит в плоскости. Правильный октаэдр является специальным случаем, когда все три четырёхугольника являются плоскими квадратами.
  • Многогранник Шёнхардта, невыпуклый многогранник, который нельзя разбить на тетраэдры без введения новых вершин.

Другие выпуклые восьмигранники

Шестиугольнаяпризма
Шестиугольная
призма
Усечённыйтетраэдр
Усечённый
тетраэдр
Четырёхугольныйтрапецоэдр
Четырёхугольный
трапецоэдр

В общем случае, октаэдром может называться любой многогранник с восемью гранями. Правильный октаэдр имеет 6 вершин и 12 рёбер, минимальное число для октаэдра. Неправильные восьмигранники могут иметь до 12 вершин и 18 рёбер[3][4]. Существует 257 топологически различных выпуклых восьмигранников, исключая зеркальные копии[3]. В частности, имеется 2, 11, 42, 74, 76, 38, 14 восьмигранников с числом вершин от 6 до 12 соответственно[5][6]. (Два многогранника «топологически различны», если они имеют внутренне различное расположение граней и вершин, так что нет возможности преобразовать одно тело в другое просто изменением длины рёбер или углов между рёбрами или гранями.)

Некоторые известные неправильные восьмигранники:

  • Шестиугольная призма: Две грани являются параллельными правильными шестиугольниками, шесть квадратов соединяют соответствующие пары сторон шестиугольников.
  • Семиугольная пирамида: Одна грань является семиугольником (обычно правильным), а оставшиеся семь граней являются треугольниками (обычно равнобедренными). Невозможно добиться, чтобы все треугольные грани были равносторонними.
  • Усечённый тетраэдр: Четыре грани тетраэдра усекаются до правильных шестиугольников и образуются три дополнительные равносторонние треугольные грани на месте отсечённых вершин.
  • Четырёхугольный трапецоэдр: Восемь граней конгруэнтны дельтоидам.

Октаэдры в физическом мире

Октаэдры в природе

Октаэдр флюорита
Октаэдр флюорита

Октаэдры в искусстве и культуре

Две одинаково сложенные змейки Рубика могут аппроксимировать октаэдр.
Две одинаково сложенные змейки Рубика могут аппроксимировать октаэдр.
  • В играх игральная кость в виде октаэдра известна как «d8».
  • Если каждое ребро октаэдра заменить одноомным резистором, общее сопротивление между противоположными вершинами будет составлять 1/2 ома, а между смежными вершинами — 5/12 ома[7].
  • Шесть музыкальных нот можно расположить на вершинах октаэдра так, что каждое ребро представляет созвучную пару, а каждая грань — созвучную тройку.
  • Противотанковый ёж имеет форму трёх диагоналей октаэдра.

Тетраэдральная связка

Каркас из повторяющихся тетраэдров и октаэдров изобретён Фуллером в 1950-х и он известен как пространственная рама[en] и считается прочнейшей структурой, сопротивляющейся напряжениям консольной балки.

Связанные многогранники

Правильный октаэдр можно увеличить до тетраэдра добавлением четырёх тетраэдров на чередующиеся грани. Добавление тетраэдров ко всем восьми граням образует звёздчатый октаэдр.

Triangulated tetrahedron.png
Compound of two tetrahedra.png
тетраэдр звёздчатый октаэдр

Октаэдр принадлежит семейству однородных многогранников, связанных с кубом.

Однородные октаэдральные многогранники
Симметрия: [4,3], (*432)[en] [4,3]+, (432) [3+,4], (3*2)
Uniform polyhedron-43-t0.svg
Uniform polyhedron-43-t01.svg
Uniform polyhedron-43-t1.svg
Uniform polyhedron-43-t12.svg
Uniform polyhedron-43-t2.svg
Uniform polyhedron-43-t02.png
Uniform polyhedron-43-t012.png
Uniform polyhedron-43-s012.png
Uniform polyhedron-43-h01.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
{4,3} t{4,3} r{4,3} t{3,4} {3,4} rr{4,3} tr{4,3} sr{4,3} s{3,4}
Двойственные многогранники
Octahedron.svg
Triakisoctahedron.jpg
Rhombicdodecahedron.jpg
Tetrakishexahedron.jpg
Hexahedron.svg
Deltoidalicositetrahedron.jpg
Disdyakisdodecahedron.jpg
Pentagonalicositetrahedronccw.jpg
POV-Ray-Dodecahedron.svg
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V35

Он также является одним из простейших примеров гиперсимплекса[en], многогранника, образованного определённым пересечением гиперкуба с гиперплоскостью.

Октаэдр входит в последовательность многогранников с символом Шлефли {3,n}, продолжающейся на гиперболическую плоскость.

*n32 симметрии правильных мозаик: 3n or {3,n}
Сферическая Евклидова Компактная гипербол. Пара-
компактная
Некомпактная гиперболическая
Trigonal dihedron.png
Uniform tiling 332-t2.png
Uniform tiling 432-t2.png
Uniform tiling 532-t2.png
Uniform polyhedron-63-t2.png
H2 tiling 237-4.png
H2 tiling 238-4.png
H2 tiling 23i-4.png
H2 tiling 23j12-4.png
H2 tiling 23j9-4.png
H2 tiling 23j6-4.png
H2 tiling 23j3-4.png
3.3 33 34 35 36 3<sup>7</sup> 3<sup>8</sup> 3<sup>∞</sup> 312i 39i 36i 33i

Тетратетраэдр

Правильный октаэдр можно рассматривать как полностью усечённый тетраэдр и может быть назван тетратетраэдром. Это можно показать с помощью раскрашенной в два цвета модели. При этом раскрашивании октаэдр имеет тетраэдральную симметрию.

Сравнение последовательности усечения тетраэдра и его двойственной фигуры:

Семейство однородных тетраэдральных многогранников
Симметрия: [3,3], (*332) [3,3]+, (332)
Uniform polyhedron-33-t0.png
Uniform polyhedron-33-t01.png
Uniform polyhedron-33-t1.png
Uniform polyhedron-33-t12.png
Uniform polyhedron-33-t2.png
Uniform polyhedron-33-t02.png
Uniform polyhedron-33-t012.png
Uniform polyhedron-33-s012.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
{3,3} t{3,3} r{3,3} t{3,3} {3,3} rr{3,3} tr{3,3} sr{3,3}
Двойственные многогранники
Tetrahedron.svg
Triakistetrahedron.jpg
Hexahedron.svg
Triakistetrahedron.jpg
Tetrahedron.svg
Rhombicdodecahedron.jpg
Tetrakishexahedron.jpg
POV-Ray-Dodecahedron.svg
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3

Вышеприведённые тела можно понимать как срезы, ортогональные к длинной диагонали тессеракта. Если расположить эту диагональ вертикально с высотой 1, то первые пять сечений сверху будут на высотах r, 3/8, 1/2, 5/8 и s, где r — любое число в интервале (0,1/4], а s — любое число в интервале [3/4,1).

Октаэдр в качестве тетратетраэдра существует в последовательности симметрий квазиправильных многогранников и мозаик с конфигурацией вершин (3.n)2, проходя от мозаик на сфере к евклидовой плоскости, а затем в гиперболическую плоскость. В орбифолдной нотации[en] симметрии *n32 все эти мозаики являются построениями Витхоффа внутри фундаментальной области симметрии с генерирующими точками на прямом угле области[8][9].

*n32 орбифолдные симметрии квазирегулярных мозаик: (3.n)2
Quasiregular fundamental domain.png

Построение
Сферическая Евклидова Гиперболическая
*332 *432 *532 *632 *732 *832... *∞32
Квазирегулярные
фигуры
Uniform tiling 332-t1-1-.png
Uniform tiling 432-t1.png
Uniform tiling 532-t1.png
Uniform tiling 63-t1.png
H2 tiling 237-2.png
H2 tiling 238-2.png
H2 tiling 23i-2.png
Вершина (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)<sup>2</sup> (3.8)<sup>2</sup> (3.∞)<sup>2</sup>

Треугольная антипризма

В качестве треугольной антипризмы октаэдр связан с семейством шестиугольной диэдральной симметрии.

Однородные шестиугольные диэдральные сферические многогранники
Симметрия: [6,2], (*622) [6,2]+, (622) [6,2+], (2*3)
Hexagonal dihedron.png
Dodecagonal dihedron.png
Hexagonal dihedron.png
Spherical hexagonal prism.png
Spherical hexagonal hosohedron.png
Spherical truncated trigonal prism.png
Spherical dodecagonal prism2.png
Spherical hexagonal antiprism.png
Spherical trigonal antiprism.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{2,6} tr{6,2}[en] sr{6,2} s{2,6}
Двойственные им многогранники
Spherical hexagonal hosohedron.png
Spherical dodecagonal hosohedron.png
Spherical hexagonal hosohedron.png
Spherical hexagonal bipyramid.png
Hexagonal dihedron.png
Spherical hexagonal bipyramid.png
Spherical dodecagonal bipyramid.png
Spherical hexagonal trapezohedron.png
Spherical trigonal trapezohedron.png
V62 V122 V62 V4.4.6[en] V26 V4.4.6[en] V4.4.12 V3.3.3.6[en] V3.3.3.3
Семейство однородных антипризм n.3.3.3
Многогранник
Digonal antiprism.png
Trigonal antiprism.png
Square antiprism.png
Pentagonal antiprism.png
Hexagonal antiprism.png
Antiprism 7.png
Octagonal antiprism.png
Enneagonal antiprism.png
Decagonal antiprism.png
Hendecagonal antiprism.png
Dodecagonal antiprism.png
Мозаика
Spherical digonal antiprism.png
Spherical trigonal antiprism.png
Spherical square antiprism.png
Spherical pentagonal antiprism.png
Spherical hexagonal antiprism.png
Spherical heptagonal antiprism.png
Spherical octagonal antiprism.png
Infinite antiprism.png
Конфигурация V2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 8.3.3.3 9.3.3.3 10.3.3.3 11.3.3.3 12.3.3.3 ...∞.3.3.3

Квадратная бипирамида

Семейство бипирамид
Многогранник
Triangular bipyramid.png
Square bipyramid.png
Pentagonale bipiramide.png
Hexagonale bipiramide.png
Heptagonal bipyramid.png
Octagonal bipyramid.png
Enneagonal bipyramid.png
Decagonal bipyramid.png
Мозаика
Spherical digonal bipyramid.png
Spherical trigonal bipyramid.png
Spherical square bipyramid.png
Spherical pentagonal bipyramid.png
Spherical hexagonal bipyramid.png
Spherical heptagonal bipyramid.png
Spherical octagonal bipyramid.png
Spherical enneagonal bipyramid.png
Spherical decagonal bipyramid.png
E2 tiling 22i-2 dual.png
Конфигурация V2.4.4 V3.4.4 V4.4.4 V5.4.4 V6.4.4 V7.4.4 V8.4.4 V9.4.4 V10.4.4 ...V∞.4.4

См. также

Примечания

  1. Селиванов Д. Ф.,. Тело геометрическое // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  2. Finbow, Hartnell, Nowakowski, Plummer, 2010, с. 894–912.
  3. 1 2 3 Weisstein, Eric W. Octahedron (англ.) на сайте Wolfram MathWorld.
  4. Steven Dutch. Enumeration of Polyhedra (недоступная ссылка). Дата обращения: 8 ноября 2015. Архивировано 10 октября 2011 года.
  5. Counting polyhedra
  6. Архивированная копия. Дата обращения: 14 августа 2016. Архивировано 17 ноября 2014 года.
  7. Klein, 2002, с. 633–649.
  8. Williams, 1979.
  9. Two Dimensional symmetry Mutations by Daniel Huson

Литература

Ссылки

Эта страница в последний раз была отредактирована 9 ноября 2021 в 13:15.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).