Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Обра́тная ма́трица — такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

Квадратная матрица обратима тогда и только тогда, когда она невырождена, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Энциклопедичный YouTube

  • 1/5
    Просмотров:
    42 513
    219 716
    46 300
    163 403
    2 526
  • ✪ Обратная матрица (2 способа нахождения)
  • ✪ Как находить обратную матрицу - bezbotvy
  • ✪ Обратная матрица #1
  • ✪ Решение системы уравнений методом обратной матрицы - bezbotvy
  • ✪ Обратная Матрица

Субтитры

Содержание

Свойства обратной матрицы

  • , где обозначает определитель.
  • для двух квадратных обратимых матриц и .
  • , где обозначает транспонированную матрицу.
  • для любого коэффициента .
  • .
  • Если необходимо решить систему линейных уравнений , (b — ненулевой вектор) где  — искомый вектор, и если существует, то . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы

Метод Жордана—Гаусса

Возьмём две матрицы: саму A и единичную E. Приведём матрицу A к единичной матрице методом Гаусса—Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A−1.

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

.
.

Вторая матрица после применения всех операций станет равна , то есть будет искомой. Сложность алгоритма — .

С помощью матрицы алгебраических дополнений

Матрица, обратная матрице , представима в виде

где  — присоединенная матрица (матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы).

Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet.

Использование LU/LUP-разложения

Матричное уравнение для обратной матрицы можно рассматривать как совокупность систем вида . Обозначим -й столбец матрицы через ; тогда , , поскольку -м столбцом матрицы является единичный вектор . другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³)[1].

Если матрица A невырождена, то для неё можно рассчитать LUP-разложение . Пусть , . Тогда из свойств обратной матрицы можно записать: . Если умножить это равенство на U и L то можно получить два равенства вида и . Первое из этих равенств представляет собой систему из n² линейных уравнений для , из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для , из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно рекуррентно определить все n² элементов матрицы D. Тогда из равенства (PA)−1 = A−1P−1 = B−1 = D получаем равенство .

В случае использования LU-разложения не требуется перестановки столбцов матрицы D, но решение может разойтись даже если матрица A невырождена.

Сложность алгоритма — O(n³).

Итерационные методы

Методы Шульца

Оценка погрешности

Выбор начального приближения

Проблема выбора начального приближения в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору , обеспечивающие выполнение условия (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы (а именно, если A — симметричная положительно определённая матрица и , то можно взять , где ; если же A — произвольная невырожденная матрица и , то полагают , где также ; можно конечно упростить ситуацию и, воспользовавшись тем, что , положить ). Во-вторых, при таком задании начальной матрицы нет гарантии, что будет малой (возможно, даже окажется ), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Примеры

Матрица 2 × 2

[2]

Обращение матрицы 2 × 2 возможно только при условии, что .

Примечания

  1. Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, — М.: Вильямс, 2006 (с. 700).
  2. Как найти обратную матрицу?. mathprofi.ru. Дата обращения 18 октября 2017.

Ссылки

Эта страница в последний раз была отредактирована 6 ноября 2019 в 22:05.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).