Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

В теории категорий нулевой морфизм — это морфизм, обобщающий свойства линейных отображений в ноль.

Определение

Пусть C — категория, и f : XY — морфизм в C. f называется постоянным морфизмом, если для любого объекта W в C и любых g, h : WX, fg = fh. Соответственно, f называется копостоянным морфизмом, если для любого объекта Z и любых g, h ∈ MorC(Y, Z), gf = hf. Нулевой морфизм — это морфизм, являющийся одновременно постоянным и копостоянным.

Категория с нулевыми морфизмами — это категория, в которой для любых двух объектов A и B зафиксирован морфизм 0AB : AB, такой что для любых объектов X, Y, Z в C и любых морфизмов f : YZ, g : XY следующая диаграмма коммутативна:

Тогда морфизмы 0XY обязательно являются нулевыми. Если C — категория с нулевыми морфизмами, то 0XY определены однозначно.

Примеры

  • Более общо, пусть C — категория с нулевым объектом 0. Тогда для любых двух объектов X и Y существует единственная последовательность морфизмов
0XY : X0Y
Семейство таких морфизмов снабжает C структурой категории с нулевыми морфизмами.
  • Если C — предаддитивная категория, то каждое множество морфизмов set Mor(X,Y) является абелевой группой и имеет нулевой элемент. Эти нулевые элементы образуют семейство нулевых морфизмов, делая C категорией с нулевыми морфизмами.

Литература

  • Параграф 1.7 Pareigis, Bodo. Categories and functors (неопр.). — Academic Press, 1970. — Т. 39. — (Pure and applied mathematics). — ISBN 978-0-12-545150-5.
  • Herrlich, Horst; Strecker, George E. Category Theory (неопр.). — Allen and Bacon, Inc. Boston, 1973..
Эта страница в последний раз была отредактирована 2 января 2020 в 16:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).