Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Нормальный оператор — линейный ограниченный оператор в гильбертовом пространстве, перестановочный со своим сопряжённым: . Частными случаями нормальных операторов являются самосопряжённые операторы: и унитарные операторы: . Для нормальных операторов выполняется спектральная теорема.

Разложения

Аддитивное разложение аналогично выражению комплексного числа через его действительную и мнимую части: , а мультипликативное разложение — представлению в показательной форме: [1]

Свойства

  • Если оператор нормален, то операторы , , а также обратный оператор (если он существует), тоже нормальны.[2]
  • Линейный непрерывный оператор в гильбертовом пространстве нормален тогда и только тогда, когда для каждого .
  • . Здесь  — ядро,  — образ оператора .
  • Если при некотором и , то .
  • Собственные подпространства, соответствующие различным собственным значениям нормального оператора, ортогональны.[3]
  • Теорема о перестановочности. Пусть  — линейные непрерывные операторы, причем операторы и нормальны. Если , то . В частности, если оператор перестановочен с нормальным оператором , то он перестановочен и с сопряжённым .[4]
  • [5]
  • Нормальный оператор является самосопряжённым тогда и только тогда, когда его спектр лежит на вещественной оси. Нормальный оператор является унитарным тогда и только тогда, когда его спектр лежит на единичной окружности.[6]
  • Подобные нормальные операторы унитарно эквивалентны, то есть если , где  — нормальные операторы, а оператор обратим, то , где  — унитарный оператор.[7]
  • , следовательно, спектральный радиус нормального оператора совпадает с его нормой.[2]

Спектральная теорема

Любому нормальному оператору соответствует семейство проекционных операторов , являющихся аддитивной и мультипликативной функцией прямоугольника, таким образом, что

и вообще

где  — произвольный многочлен от и ; при любом фиксированном прямоугольнике оператор является пределом некоторой последовательности многочленов от операторов и [8].

На основе спектрального разложения нормальных операторов строится функциональное исчисление для функций

[9]

Случай конечномерного пространства

В конечномерном унитарном пространстве в ортонормированном базисе нормальному оператору отвечает нормальная матрица. Нормальный оператор также обладает следующими свойствами.

Неограниченные операторы

Понятие нормального оператора обобщается на неограниченные операторы. Линейный оператор (не обязательно ограниченный) в гильбертовом пространстве называется нормальным, если его область определения плотна в , он замкнут и удовлетворяет условию . Для нормального оператора , для любого . Обобщаются и некоторые другие свойства нормального оператора, в том числе спектральная теорема.[11]

См. также

Примечания

Литература

Эта страница в последний раз была отредактирована 3 июня 2018 в 08:27.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).