Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Нормальная форма (математика)

Из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Нормальная форма (значения).

В математике, норма́льная фо́рма — простейший либо канонический вид, к которому объект приводится эквивалентными преобразованиями[1].

Нормальные формы в логике

Формула в булевой логике может быть записана в дизъюнктивной и в конъюнктивной нормальной форме.

Нормальные формы в алгебре

Несократимые дроби

Несократимая дробь с натуральным знаменателем и целым числителем — нормальная форма рационального числа. Для рациональной функции нормальной формой является несократимая дробь с нормированным многочленом (т.е. с 1 при старшей степени) в знаменателе.

Жорданова нормальная форма

В линейной алгебре, матрица линейного преобразования конечномерного пространства выбором базиса может быть приведена к жордановой нормальной форме. В этом виде матрица блочно-диагональна, а каждый блок является суммой скалярной матрицы и матрицы с единицами на первой наддиагонали. В частности, тем самым матрица разбивается в сумму коммутирующих диагональной и нильпотентной, благодаря чему становится простым вычисление функций (в частности, полиномов и экспонент) от этой матрицы.

Прочие

Достаточно часто задача приведения к нормальной форме решается алгоритмически, а нормальная форма в классе эквивалентности единственна; в таком случае вопрос об эквивалентности объектов оказывается алгоритмически разрешимым путём сравнения нормальных форм.

Нормальные формы в анализе

Формальные нормальные формы векторных полей

Формальная замена координат, т.е. замена координат, заданная формальными степенными рядами позволяет привести векторное поле в окрестности его особой точки к формальной нормальной форме Пуанкаре — Дюлака.

Резонансная нормальная форма для фуксовых особых точек

Примечания

  1. James Murdock (2006) Normal forms. Scholarpedia, 1(10):1902.

Ссылки

Эта страница в последний раз была отредактирована 24 марта 2018 в 03:12.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).