Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Несмещённая оце́нка в математической статистике — это точечная оценка, математическое ожидание которой равно оцениваемому параметру.

Энциклопедичный YouTube

  • 1/5
    Просмотров:
    851
    22 888
    23 028
    4 149
    1 254
  • 17 - Мат. статистика. Несмещенность
  • "Математическая статистика", Райгородский А. М. 04.02.2021г.
  • Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минут
  • Совокупности их Параметры и Статистики за 8 минут
  • Математическая статистика. Лекция 2 (9). Оценки параметров распределения. Лектор Бредихина О.А.

Субтитры

Определение

Пусть выборка из распределения, зависящего от параметра . Тогда оценка называется несмещённой, если

,

где

В противном случае оценка называется смещённой, и случайная величина называется её смеще́нием.

Примеры

  • Выборочное среднее является несмещённой оценкой математического ожидания , так как если , , то .
  • Пусть независимые случайные величины имеют конечную дисперсию . Построим оценки
 — выборочная дисперсия,

и

 — исправленная выборочная дисперсия.

Тогда является смещённой, а несмещённой оценками параметра . Смещённость можно доказать следующим образом.

Пусть и  — среднее и его оценка соответственно, тогда:

Добавив и отняв , а затем сгрупировав слагаемые, получим:

Возведём в квадрат и получим:

Заметив, что , получим:

Учитывая, что

  • (свойство математического ожидания);
  • дисперсия;
  • , т.к. , учитывая, что и независимые и , т.е. ,

получим:

Литература и некоторые ссылки

Эта страница в последний раз была отредактирована 17 марта 2022 в 14:22.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).