Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Начало декартовой системы координат на плоскости
Начало декартовой системы координат на плоскости

Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.

Вектор, проведённый из начала координат, в другую точку называется радиус-вектором.

Декартова система координат

В декартовой системе координат, начало координат — это точка, в которой пересекаются все оси координат. Это означает, что все координаты этой точки равны нулю. Например, на плоскости она имеет координаты (0,0), а в трёхмерном пространстве — (0,0,0).

Начало координат делит каждую из осей на два луча — положительную полуось и отрицательную полуось.

В частности, начало координат можно ввести на числовой оси. В этом смысле можно говорить о начале координат для разных экстенсивных величин (времени, температуры и пр.)

Полярные системы координат

В полярной (на плоскости) и цилиндрической и сферической системах координат (в пространстве), начало координат имеет особое название — «полюс». Полюс является точкой сингулярности таких систем координат, поскольку в такой точке одна или несколько координат не определены. Обычно такой координатой является угол (например, в полярной системе координат, в точке О угол может принимать любое значение — положение точки, определяемой координатами , не зависит от выбора ), в то время как радиус (или какой-то другой аналог расстояния до полюса) обычно равняется нулю.

Симметрия

Этот график симметричен относительно начала координат
Этот график симметричен относительно начала координат

Если график функции симметричен относительно начала координат (то есть выглядит так же, если его повернуть на 180° относительно этой точки), то такая функция называется нечётной.

См. также

Ссылки

Эта страница в последний раз была отредактирована 20 февраля 2020 в 08:42.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).