Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Пример реализации нанофлюидного устройства — мембрана на основе массива нанокапилляров (NCAM). NCAM состоит из большого числа параллельных нанокапилляров, каждый из которых имеет радиус a/2, примерно соответствующий дебаевской длине — κ−1
Пример реализации нанофлюидного устройства — мембрана на основе массива нанокапилляров (NCAM). NCAM состоит из большого числа параллельных нанокапилляров, каждый из которых имеет радиус a/2, примерно соответствующий дебаевской длине — κ−1

Нанофлюи́дика или наногидродина́мика — раздел гидродинамики наноструктурных жидкостей. Нанофлюидика изучает поведение, способы управления и контроля жидкости, ограниченной нанометровыми структурами. В таком состоянии жидкость проявляет нетипичные для объемного состояния свойства, например резкое увеличение или уменьшение вязкости возле стенок нанокапилляров, изменение термодинамических параметров жидкости, а также нетипичную химическую активность на границе раздела твердой и жидкой фаз. Причина этого в том, что характерные параметры жидкости, такие как дебаевская длина, гидродинамический радиус становятся соразмерными с размерами ограничивающей жидкость структуры[1].

На рисунке представлена мембранная структура на основе массива нанокапилляров. Радиус каждого капилляра одного порядка с дебаевской длиной жидкости, пропускаемой через него.

Теория

В 1965 году, Райс и Уайтхэд опубликовали основополагающую статью по теории транспорта раствора электролита в длинных (в идеале бесконечных) капиллярах нанометрового диаметра.[2] В предложенной ими модели потенциал ϕ на радиальном расстоянии r задается уравнением Пуассона-Больцмана,

где κ — обратная длина Дебая,

которая зависит от концентрации ионов n, диэлектрической постоянной ε, константы Больцмана k и температуры T. Определив радиальную зависимость потенциала φ(r) можно найти плотность заряда из уравнения Пуассона, решение которого может быть представлено в виде модифицированной функции Бесселя первого порядка I0 и отнормировано по радиусу капилляра a. Уравнение движения, учитывающее давление и электрически управляемый поток жидкости может быть записано в виде,

где η — вязкость, dp/dz — градиент давления, Fz — объемная сила, зависящая от приложенного электрического поля, а Ez — плотность результирующего заряда в двойном электрическом слое. Когда давление к капилляру не приложено, радиальное распределение скорости можно приближенно представить следующим выражением,

Из этого уравнения следует, что поток жидкости в нанокапиллярах регулируется произведением κa, то есть зависит от длины Дебая и радиуса пор. Таким образом потоком жидкости можно управлять изменяя эти два параметра и изменяя поверхностную плотность заряда.

Изготовление

Электронный микроскоп Carl Zeiss Crossbeam 550 объединяющий  метод полевой эмиссионной сканирующей электронной микроскопии (FE-SEM) и метод ионного травления сфокусированным ионным пучком (FIB).
Электронный микроскоп Carl Zeiss Crossbeam 550 объединяющий  метод полевой эмиссионной сканирующей электронной микроскопии (FE-SEM) и метод ионного травления сфокусированным ионным пучком (FIB).
Нанофлюидные каналы, изготовленные на кремниевой подложке методом ионного травления на микроскопе Zeiss Crossbeam 550 L[3]
Нанофлюидные каналы, изготовленные на кремниевой подложке методом ионного травления на микроскопе Zeiss Crossbeam 550 L[3]

]

Наноструктуры, в которых реализуются условия, необходимые для управления потоком жидкости, могут быть изготовлены в виде изолированных цилиндрических каналов, нанощелей или в виде массива наноканалов в таких материалах как кремний, стекло, полимеры (такие как ПММА, ПДМС, полипропиленовые трековые мембраны) и синтетических поровых структур.[4] Обычная фотолитография, объёмная или поверхностная микромеханическая обработка, техники копирования (тиснение, печать, литьё и впрыск под давлением), а также треки тяжёлых частиц и химическое травление[5][6] также могут быть использованы для создания структур, демонстрирующих поведение, описываемое нанофлюидикой.

Применение

Из-за малого размера жидких каналов нанофлюидные структуры могут быть использованы в случаях, когда исследуемые объекты должны быть взяты в очень малых количествах, например в счетчиках Культера[7], при аналитическом разделении и определении биомолекул, таких как белки и ДНК[8], а также в устройствах удобного захвата образцов малой массы. Одной из наиболее перспективных областей применения нанофлюидных устройств является потенциальная возможность их встраивания в микрофлюидные системы, такие как интегрированные микроаналитические системы или лаборатории-на-чипе. Например, мембраны на основе нанокапиллярного массива будучи встроенными в микрофлюидные устройства могут воспроизводимо выполнять цифровое переключение, позволяющее перенаправить жидкость из одного микрофлюидного канала в другой[9], выборочно разделять и перенаправлять исследуемые вещества по размеру и массе[9][10][11][12][13], эффективно смешивать реагирующие вещества[14] и разделять жидкости с различающимися характеристиками[9][15]. Также имеется естественная аналогия между возможностью управления жидкостью в нанофлюидных структурах и возможностью электронных компонентов управлять потоком электронов и дырок. Эта аналогия может быть использована для создания активных компонентов управления ионными токами, таких как выпрямитель[16], полевой[17][18] и биполярный транзистор[19][20]. Использование нанофлюидики возможно и в области нанооптики для создания перестраиваемых массивов микролинз[21][22]

Нанофлюидика может иметь значительное влияние на развитие биотехнологии, медицины и клинической диагностики, если будут разработаны устройства типа лабораторий-на-чипе для ПЦР и подобных методик[23].

Поскольку нанофлюидика находится на ранней стадии развития, можно ожидать появления новых направлений использования нанофлюидных устройств в ближайшие годы.

Проблемы

Существует много проблем, связанных с течением жидкостей через углеродные нанотрубки и трубки. Основная проблема заключается в блокировке канала макромолекулами и нерастворимыми примесями, находящимися в жидкости. Решением этой проблемы могло бы стать создание покрытий канала с низким коэффициентом трения либо подбор такого материала канала, который способствует уменьшению эффекта блокировки. Также, благодаря большому размеру полимеров, включая биологически значимые молекулы, такие как ДНК, которые в организме часто находятся в свернутом состоянии. Это вызывает закупорку, так как, например, типичная молекула ДНК вируса имеет длину приблизительно 100—200 тысяч гетероциклических оснований нуклеиновой кислоты и в 20-процентном водном растворе формирует случайный клубок радиусом приблизительно 700 нм. Это размер в несколько раз больше диаметра пор больших углеродных трубок и на два порядка больше диаметра одностенной углеродной нанотрубки.

См. также

Примечания

  1. Нанофлюидика (недоступная ссылка). Федеральный интернет-портал «Нанотехнологии и наноматериалы». Дата обращения: 21 апреля 2010. Архивировано 23 апреля 2012 года.
  2. C. L. Rice, R. Whitehead. Electrokinetic Flow in a Narrow Cylindrical Capillary (англ.) // Journal of Physical Chemistry. — 1965. — Vol. 69, no. 11. — P. 4017—4024.
  3. Esmek, Franziska M.; Bayat, Parisa; Pérez-Willard, Fabián; Volkenandt, Tobias; Blick, Robert H.; Fernandez-Cuesta, Irene. Sculpturing wafer-scale nanofluidic devices for DNA single molecule analysis (англ.) // Nanoscale : journal. — 2019. — Vol. 11, no. 28. — P. 13620—13631. — ISSN 2040-3364. — doi:10.1039/C9NR02979F.
  4. M. Karlsson, M. Davidson, R. Karlsson, A. Karlsson, J. Bergenholtz, Z. Konkoli, A. Jesorka, T. Lobovkina, J. Hurtig, M. Voinova, O. Orwar. Biomimetic nanoscale reactors and networks (англ.) // Annual Review of Physical Chemistry. — 2004. — Vol. 55. — P. 613—649.
  5. H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J.G. Korvink, O. Tabata. Volume 1: Enabling Technology for MEMS and Nanodevices // Advanced Micro & Nanosystems. — Wiley-VCH, 2004. — Т. 1. — С. 319—355. — 439 с. — (Tiny technology - Huge potential). — ISBN 978-3-527-30746-3.
  6. D. Mijatovic, J. C. T. Eijkel, A. van den Berg. Technologies for nanofluidic systems: top-down vs. bottom-up—a review (англ.) // Lab on a Chip. — 2005. — Vol. 5, no. 5. — P. 492—500.
  7. Saleh O.A., Sohn L.L. Quantitative sensing of nanoscale colloids using a microchip Coulter counter (англ.) // Review of Scientific Instruments. — 2001. — Vol. 72, no. 12. — P. 4449—4451.
  8. Han C., Jonas O.T., Robert H.A., Stephen Y.C. Gradient nanostructures for interfacing microfluidics and nanofluidics (англ.) // Applied Physics Letters. — 2002. — Vol. 81, no. 16. — P. 3058—3060.
  9. 1 2 3 Cannon J.D., Kuo T.-C., Bohn P.W., Sweedler J.V. Nanocapillary Array Interconnects for Gated Analyte Injections and Electrophoretic Separations in Multilayer Microfluidic Architectures (англ.) // Analytical Chemistry. — 2003. — Vol. 75, no. 10. — P. 2224—2230.
  10. Ramirez P., Mafe S., Alcaraz A., Cervera J. Modeling of pH-Switchable Ion Transport and Selectivity in Nanopore Membranes with Fixed Charges (англ.) // Journal of Physical Chemistry B. — 2003. — Vol. 107, no. 47. — P. 13178—13187.
  11. Kohli P., Harrell C.C., Cao Z., Gasparac R., Tan W., Martin C.R. DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity (англ.) // Science. — 2004. — Vol. 305, no. 5686. — P. 984—986.
  12. Jirage K.B., Hulteen J.C., Martin C.R. Effect of Thiol Chemisorption on the Transport Properties of Gold Nanotubule Membranes (англ.) // Analytical Chemistry. — 1999. — Vol. 71, no. 51. — P. 4913—4918.
  13. Kuo T.C., Sloan L.A., Sweedler J.V., Bohn P.W. Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow: Effect of Surface Charge Density and Debye Length (англ.) // Langmuir. — 2001. — Vol. 17, no. 20. — P. 6298—6303.
  14. Kuo Tzu-C., Kim H.K., Cannon D.M.Jr., Shannon M.A., Sweedler J.V., Bohn P.W. Nanocapillary Arrays Effect Mixing and Reaction in Multilayer Fluidic Structures (англ.) // Angewandte Chemie International Edition. — 2004. — Vol. 43, no. 14. — P. 1862—1865.
  15. Fa K., Tulock J.J., Sweedler J.V., Bohn P.W. Profiling pH Gradients Across Nanocapillary Array Membranes Connecting Microfluidic Channels (англ.) // Journal of the American Chemical Society. — 2005. — Vol. 127, no. 40. — P. 13928—13933.
  16. Cervera J., Schiedt B., Neumann R., Mafe S., Ramirez P. Ionic conduction, rectification, and selectivity in single conical nanopores (англ.) // Journal of Chemical Physics. — 2006. — Vol. 124, no. 10. — P. 104706.
  17. Karnik R., Castelino K., Majumdar A. Field-effect control of protein transport in a nanofluidic transistor circuit (англ.) // Applied Physics Letters. — 2006. — Vol. 88, no. 12. — P. 123114.
  18. Karnik R., Fan R., Yue M., Li D.Y., Yang P.D., Majumdar A. Electrostatic control of ions and molecules in nanofluidic transistors (англ.) // NanoLetters. — 2005. — Vol. 5, no. 5. — P. 943—948.
  19. Daiguji H., Yang P.D., Majumdar A. Ion transport in nanofluidic channels (англ.) // NanoLetters. — 2004. — Vol. 4, no. 1. — P. 137—142.
  20. Vlassiouk I., Siwy Z.S. Nanofluidic Diode (англ.) // NanoLetters. — 2007. — Vol. 7, no. 3. — P. 552—556.
  21. Grilli S., Miccio L., Vespini V., Finizio A., De Nicola S., Ferraro P. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates (англ.) // Optics Express. — 2008. — Vol. 16, no. 11. — P. 8084—8093.
  22. Ferraro P., Miccio L., Grilli S., Finizio A., De Nicola S., Vespini V. Manipulating Thin Liquid Films for Tunable Microlens Arrays (англ.) // Optics and Photonics News. — 2008. — Vol. 19, no. 12. — P. 34—34.
  23. Herold K.E., Rasooly A. (редакторы). Lab-on-a-Chip Technology (Vol. 2): Biomolecular Separation and Analysis. — Caister Academic Press, 2009. — ISBN 978-1-904455-47-9.

Литература

Эта страница в последний раз была отредактирована 14 мая 2020 в 23:02.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).