Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Многочастичный фильтр

Из Википедии — свободной энциклопедии

Многочасти́чный фильтр[1] (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году[2] Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.

В сравнении с обычно применяемыми для подобных задач методами — расширенными фильтрами Кальмана (EKF) — многочастичные фильтры не зависят от методов линеаризации или апроксимации. Обычный EKF плохо справляется с существенно нелинейными моделями, а также в случае шумов системы и измерений, сильно отличающихся от гауссовых, поэтому были разработаны различные модификации, такие как UKF (англ. unscented KF), QKF (англ. Quadrature KF) и т. п.[3]. Следует отметить, что в свою очередь многочастичные фильтры более требовательны к вычислительным ресурсам.

Термин «particle filter» был дан Дел Моралом в 1996 году[4], а «sequential Monte Carlo» — Лю (Liu) и Ченом (Chen) в 1998.

Многие используемые на практике многочастичные фильтры выводятся применением последовательного метода Монте-Карло к последовательности целевых распределений[5].

Постановка задачи

МЧФ предназначен для оценки последовательности скрытых переменных для на основании наблюдений при . Для простоты изложения будем считать, что рассматривается динамическая система, и и  — действительные вектора состояния и измерений соответственно[1].

Стохастическое уравнение состояния системы имеет вид:

,

где функция изменения состояния системы,  — случайная величина, возмущающее воздействие.

Уравнение измерений:

,

где функция измерения,  — случайная величина, шум измерений.

Функции и в общем случае нелинейные, а статистические характеристики шума системы () и измерений () предполагаются известными.

Задачей фильтрации является получение оценки на основе известных к моменту результатов измерений .

Скрытая марковская модель и байесовский вывод

Рассмотрим дискретный марковский процесс со следующими распределениями вероятностей:

и
,
(1)

где  — плотность вероятности,  — условная плотность вероятности (переходная плотность вероятности) при переходе от к .

Здесь нотация означает, что при условии распределено как .

Реализации процесса (скрытые переменные ) наблюдаются посредством другого случайного процесса  — процесса измерений — с маргинальными плотностями:

, (2)

где  — условная плотность вероятности (плотность измерений), измерения считаются статистически независимыми.

Модель может проиллюстрирована следующей диаграммой переходов:

Для простоты считаем, что переходная плотность и плотность измерений не зависят от . Параметры модели считаются заданными.

Определённая таким образом модель системы и измерений известна как скрытая марковская модель[6].

Уравнение (1) определяет априорное распределение для процесса :

(3)

Аналогично (2) задаёт функцию правдоподобия:

, (4)

Здесь и далее нотация для обозначает .

Таким образом, байесовский вывод для при известных реализациях измерений , обозначенных соответственно как и , будет опираться на апостериорное распределение

, (5)

где (здесь  — доминирующая мера):

.

Выборка по значимости

См. также Выборка по значимости.

Метод Монте-Карло позволяет оценивать свойства довольно сложных распределений вероятностей, например, путём вычисления средних и дисперсии в виде интеграла[3]:

,

где  — функция для оценивания. Например, для среднего можно положить: .

В случае невозможности аналитического решения, задача может быть решена численно генерированием случайных выборок с плотностью , обозначим их как , и получением среднего арифметического по точкам выборки[3]:

В более общем случае, когда выборка из затруднена, применяется другое распределение (так называемое англ. instrumental or importance distribution), а для сохранения несмещённости оценки вводятся весовые коэффициенты на основе отношения [3]:

после чего вычисляет взвешенное среднее:

,

Перевыборка

Хотя вспомогательное распределение используется в основном для упрощения выборки из основного распределения , часто применяется процедура «выборки и перевыборки по значимости» (англ. sampling importance resampling, SIR). Эта процедура состоит из двух этапов: собственно выборки по значимости с вычислением весов , и дополнительной выборки точек, учитывающих эти веса[3].

Перевыборка особенно необходима для последовательных фильтров[3].

Последовательный метод Монте-Карло

Методы многочастичной фильтрации и сглаживания являются наиболее известными примерами алгоритмов последовательного метода Монте-Карло (англ. sequential Monte Carlo, SMC). До такой степени, что в литературе часто не делают между ними различия. Тем не менее, SMC включает в себя более широкий класс алгоритмов, применимых для описания более сложных приблизительных методов фильтрации и сглаживания[7].

Последовательные методы Монте-Карло являются классом методов Монте-Карло, которые производят последовательную выборку из последовательности целевых плотностей вероятностей увеличивающейся размерности, где каждое определено на декартовой степени [5].

Если записать плотность как:[5]

, где
известна поточечно, а
 — нормализующая, возможно неизвестная, постоянная, то

SMC-алгоритм будет находить приближения и оценки для .

Например, для случая фильтрации можно положить (см. (5)):

и
,

из чего будем иметь:

.


Опуская вывод, схему предиктор-корректор можно представить в следующем виде[3]:

 — предиктор,
 — корректор.

Множитель  — нормализующая постоянная, которая не требуется для обычного SMC-алгоритма.

Алгоритм

Типичный алгоритм многочастичного фильтра можно представить в следующем виде[3]:

   Алгоритм МЧФ
   -- инициализация
   для i = 1...N:
     выборка  из 
     -- начальные веса
      
   кц
   для n = 1...T:
     если ПЕРЕВЫБОРКА то
       -- выбор индексов  N частиц в соответствии с весами
        = SelectByWeight()
       для i = 1...N:
         
         
     иначе
       для i = 1...N:
         
     для i = 1...N:
       -- шаг распространения частицы
       
       -- обновление весов
        
     кц
     -- нормализация весов
     
     для i = 1...N:
       
   кц

См. также

Примечания

  1. 1 2 Микаэльян, 2011.
  2. Gordon, Salmond, Smith, 1993.
  3. 1 2 3 4 5 6 7 8 Cappé, Godsill, Moulines, 2007.
  4. Del Moral, Pierre. Non Linear Filtering: Interacting Particle Solution. (англ.) // Markov Processes and Related Fields. — 1996. — Vol. 2, no. 4. — P. 555–580. Архивировано 4 марта 2016 года.
  5. 1 2 3 Doucet, Johansen, 2011.
  6. Doucet, Johansen, 2011, 2.1 Hidden Markov Models and Inference Aims.
  7. Doucet, Johansen, 2011, 3 Sequential Monte Carlo Methods.

Литература

  • Doucet, Arnaud and de Freitas, Nando and Gordon, Neil. An Introduction to Sequential Monte Carlo Methods // Sequential Monte Carlo Methods in Practice / Doucet, Arnaud and de Freitas, Nando and Gordon, Neil. — Springer New York. — 3-14 p. — ISBN 978-1-4419-2887-0.
  • Arulampalam, M.S. and Maskell, S. and Gordon, N. and Clapp, T. A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian Tracking (англ.) // Trans. Sig. Proc.. — IEEE Press, 2002. — Vol. 50, no. 2. — P. 174—188. — ISSN 1053-587X. См. также более раннюю версию (англ.)
  • Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (англ.) // IEEE Proceedings F, Radar and Signal Processing. — IET, 1993. — Vol. 140, no. 2. — P. 107—113. — doi:10.1049/ip-f-2.1993.0015.
  • Микаэльян С. В. Методы фильтрации на основе многоточечной аппроксимации плотности вероятности оценки в задаче определения параметров движения цели при помощи измерителя с нелинейной характеристикой // Наука и образование : электронное издание. — МГТУ им. Н. Э. Баумана, 2011. — ISSN 1994-0408. Архивировано 4 марта 2016 года.
  • Ristic, B., Arulampalam, S., Gordon, N. Beyond the Kalman Filter — Particle Filters for Tracking Applications. — Artech House, 2004. — 299 p. — ISBN 9781580536318.

Ссылки

Эта страница в последний раз была отредактирована 1 октября 2023 в 07:31.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).