Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Многогранник Биркгофа

Из Википедии — свободной энциклопедии

Многогранник Биркгофа Bn, который также называется многогранником назначений, многогранником дважды стохастических матриц или многогранником совершенных паросочетаний полного двудольного графа [1], это выпуклый многогранник в RN (где ), точками которого являются дважды стохастические матрицы, то есть n × n матрицы, элементами которых служат неотрицательные вещественные числа и сумма строк и столбцов этих матриц равна 1.

Свойства

Вершины

Многогранник Биркгофа имеет n! вершин, по одной вершине на каждую перестановку n элементов[1]. Это следует из теоремы Биркгофа — Фон Неймана, которая утверждает, что экстремальные точки[en] многогранника Биркгофа — это матрицы перестановок, и потому, что любая дважды стохастическая матрица может быть представлена в виде выпуклой комбинации матриц перестановок. Это доказал в 1946 году в своей статье Гаррет Биркгоф[2], но эквивалентные результаты в терминах конфигураций и паросочетаний регулярных двудольных графов показали много ранее в 1894 году Эрнст Штайниц в своих тезисах и в 1916 году Денеш Кёниг[3].

Рёбра

Рёбра многогранника Биркгофа соответствуют парам перестановок, различающихся циклом:

перестановка такая, что является циклом.

Из этого следует, что граф многогранника Bn является графом Кэли симметрической группы Sn. Отсюда также следует, что граф B3 является полным графом K6, а тогда B3 — смежностный многогранник.

Фасеты

Многогранник Биркгофа лежит внутри (n2 − 2n + 1)-мерного аффинного подпространства n2-мерного пространства всех n × n матриц — это подпространство задаётся линейными ограничениями, что сумма по каждой строке и каждому столбцу равна единице. Внутри этого подпространства накладывается n2 линейных неравенств, по одному на каждую координату, требующих неотрицательности координат.

Таким образом, многогранник имеет в точности n2 фасет[1].

Симметрии

Многогранник Биркгофа Bn вершинно транзитивен и гранетранзитивен (то есть двойственный многогранник вершинно транзитивен). Многогранник не входит в число правильных для n>2.

Объём

Нерешённой задачей является нахождение объёма многогранников Биркгофа. Объём найден для [4]. Известно, что объём равен объёму многогранника, ассоциированного со стандартной диаграммой Юнга[5]. Комбинаторная формула для всех n дана в 2007[6]. Следующую асимптотическую формулу нашли Родни Кэнфилд[en] и Брендан МакКэй[en][7]:

Многочлен Эрхарта

Нахождение многочлена Эрхарта многогранника сложнее, чем нахождение объёма, поскольку объём можно легко вычислить из ведущего коэффициента многочлена Эрхарта. Многочлен Эрхарта, ассоциированный с многогранником Биркгофа, известен только для малых значений и только имеется гипотеза, что все коэффициенты многочленов Эрхарта (для многогранников Биркгофа) неотрицательны.

Обобщения

  • Многогранник Биркгофа является специальным случаем транспортного многогранника, многогранником прямоугольных матриц с неотрицательными элементами с заданными суммами по строкам и столбцам. Целые точки такого многогранника называются таблицами сопряжённости. Они играют важную роль в байесовой статистике.
  • Многогранник Биркгофа является специальным случаем многогранника паросочетаний[en], определённого как выпуклая оболочка совершенных паросочетаний конечного графа. Описание фасет в этом обобщении дал Джек Эдмондс[en] (1965) и они связаны с алгоритмом Эдмондса[en].

См. также

Примечания

Литература

  • Günter M. Ziegler. Lectures on Polytopes. — 7th. — New York: Springer, 2007. — Т. 152. — (Graduate Texts in Mathematics). — ISBN 978-0-387-94365-7.
  • Garrett Birkhoff. Tres observaciones sobre el algebra lineal [Three observations on linear algebra] // Univ. Nac. Tucumán. Revista A.. — 1946. — Т. 5. — С. 147–151.
  • Dénes Kőnig. Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére // Matematikai és Természettudományi Értesítő. — 1916. — Т. 34.
  • Igor Pak. Four questions on Birkhoff polytope // Annals of Combinatorics. — 2000. — Т. 4. — doi:10.1007/PL00001277.
  • Jesus A. De Loera, Fu Liu, Ruriko Yoshida. Formulas for the volumes of the polytope of doubly-stochastic matrices and its faces // Journal of Algebraic Combinatorics. — 2007. — Т. 30. — doi:10.1007/s10801-008-0155-y. — arXiv:math.CO/0701866.
  • Rodney E. Canfield, Brendan D. McKay. The asymptotic volume of the Birkhoff polytope. — 2007.

Литература для дальнейшего чтения

  • Matthias Beck and Dennis Pixton (2003), The Ehrhart polynomial of the Birkhoff polytope, Discrete and Computational Geometry, Vol. 30, pp. 623—637. The volume of B9.

Ссылки

  • Birkhoff polytope Web site by Dennis Pixton and Matthias Beck, with links to articles and volumes.
Эта страница в последний раз была отредактирована 16 июля 2022 в 15:31.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).