Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Метод неопределённых коэффициентов

Из Википедии — свободной энциклопедии

Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций. Указанная линейная комбинация берётся с неизвестными коэффициентами, которые определяются тем или иным способом из условий рассматриваемой задачи. Обычно для них получается система алгебраических уравнений.

Применения

Ниже приведены задачи, которые решаются методом неопределённых коэффициентов. Система уравнений в них получается из приравнивания коэффициентов при одинаковых степенях в равных многочленах.

Разложение дроби на простейшие

Классическим примером применения метода неопределённых коэффициентов является разложение правильной рациональной дроби в комплексной или вещественной области на простейшие дроби.

Пусть и многочлены с комплексными коэффициентами, причём степень многочлена меньше степени многочлена . Будем полагать, что степень многочлена равна , коэффициент при старшем члене многочлена равен 1, а , ― различные корни многочлена с кратностями , соответственно. Отсюда имеем

Функция представима, и притом единственным образом, в виде суммы простейших дробей

где ― неизвестные пока комплексные числа (их число равно ). Для их отыскания обе части равенства приводят к общему знаменателю. После его отбрасывания и приведения в правой части подобных членов получается равенство, которое сводится к системе линейных уравнений относительно .

Примечание. Нахождение коэффициентов упрощается, если имеет только некратные корни , , т.е. все и

После умножения на последнего равенства и подстановки непосредственно получаем значение соответствующего коэффициента

.

Интегрирование

При вычислении неопределённого интеграла от рациональной функции метод неопределённых коэффициентов используется при разложении дроби на сумму простейших, как описано выше, а также в методе Остроградского, применяемом если корни знаменателя дроби имеют большую кратность. Он также используется при интегрировании иррациональностей вида

где многочлен степени n. Тогда

После дифференцирования этого равенства, решая систему уравнений, определяют неопределённые коэффициенты многочлена степени n-1, а также [1].

Обращение ряда

Если функция , не равная нулю при разложена в ряд Маклорена:

то существует ряд Маклорена противоположной функции:

Коэффициенты этого ряда можно найти, перемножив эти два равенства и применив метод неопределённых коэффициентов. Получится бесконечная треугольная система линейных уравнений, из которой последовательно найдутся искомые коэффициенты.

Аналогичным, но более громоздким, образом можно найти коэффициенты ряда обратной функции:

При этом используется соотношение , то есть весь ряд для подставляется вместо в ряд для .

Сумма степеней

В качестве частного примера можно привести задачу о нахождении формулы k-х степеней: . Будем искать ответ в виде многочлена -ой степени от . Коэффициенты же этого многочлена найдём с помощью метода неопределённых коэффициентов.

Пример. Ищем в виде .

По определению , а также . Подставляя многочлен в приведённой форме и приравнивая коэффициенты при одинаковых степенях, получаем систему для их определения:

откуда получаем ответ:

Нахождение частного решения неоднородного дифференциального уравнения

В некотором смысле данное применение является обобщением предыдущего — в том случае искалось решение разностного уравнения , здесь же ищется решение уравнения .

Обычно метод неопределённых коэффициентов применяют в случаях, когда правая часть представляет собой алгебраический или тригонометрический полином.

Примечания

  1. Кудрявцев Л. Д. Математический анализ. — М.: Высшая школа, 1970. — Т. 1. — С. 369-370. — 50 000 экз.

Ссылки

Эта страница в последний раз была отредактирована 2 июля 2021 в 05:38.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).