Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Метод Лагранжа (дифференциальные уравнения)

Из Википедии — свободной энциклопедии

Метод Лагранжа (метод вариации произвольных постоянных) — метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения, без нахождения частного решения.

Энциклопедичный YouTube

  • 1/5
    Просмотров:
    2 655
    2 659
    2 193
    1 339
    24 120
  • ЛНДУ I порядка. Метод Лагранжа
  • Видеоурок "Метод вариации произвольных постоянных"
  • Дифференциальные уравнения #11
  • Метод вариации произвольных постоянных Лагранжа
  • Линейные ДУ первого порядка

Субтитры

Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения

Метод состоит в замене произвольных постоянных в общем решении

соответствующего однородного уравнения

на вспомогательные функции , производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций , что обеспечивает её однозначную разрешимость относительно .

Если  — первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам.

Метод вариации произвольных постоянных для построения решений системы линейных дифференциальных уравнений в векторной нормальной форме

состоит в построении общего решения (2) в виде

где  — базис решений соответствующего однородного уравнения, записанный в виде матрицы, а векторная функция , заменившая вектор произвольных постоянных, определена соотношением . Искомое частное решение (с нулевыми начальными значениями) при имеет вид

Для системы с постоянными коэффициентами последнее выражение упрощается:

Матрица называется матрицей Коши оператора .

Ссылки

  • exponenta.ru — Теоретическая справка c примерами
Эта страница в последний раз была отредактирована 29 декабря 2020 в 09:10.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).