Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Матрица Кирхгофа — одно из представлений конечного графа с помощью матрицы. Матрица Кирхгофа представляет дискретный оператор Лапласа для графа. Она используется для подсчета остовных деревьев данного графа (матричная теорема о деревьях), а также в спектральной теории графов.

Определение

Дан простой граф с вершинами. Тогда матрица Кирхгофа данного графа будет определяться следующим образом:

Также матрицу Кирхгофа можно определить как разность матриц

где — это матрица смежности данного графа, а — матрица, на главной диагонали которой степени вершин графа, а остальные элементы — нули:

Если граф является взвешенным, то определение матрицы Кирхгофа обобщается. В этом случае элементами главной диагонали матрицы Кирхгофа будут суммы весов рёбер, инцидентных соответствующей вершине. Для смежных (связанных) вершин , где — это вес (проводимость) ребра. Для различных не смежных (не связанных) вершин полагается .

Для взвешенного графа матрица смежности записывается с учетом проводимостей ребер, а на главной диагонали матрицы будут суммы проводимостей ребер инцидентных соответствующим вершинам.

Пример

Пример матрицы Кирхгофа простого графа.

Помеченный граф Матрица Кирхгофа

Свойства

  • Сумма элементов каждой строки (столбца) матрицы Кирхгофа равна нулю:
    .
  • Определитель матрицы Кирхгофа равен нулю:
  • Матрица Кирхгофа простого графа симметрична:
    .
  • Если взвешенный граф представляет собой электрическую сеть, где вес каждого ребра соответствует его проводимости, то миноры матрицы Кирхгофа позволяют вычислить резистивное расстояние между точками и данной сети:
    , здесь  — постоянная (алгебраическое дополнение) матрицы Кирхгофа, а  — алгебраическое дополнение 2-го порядка, то есть определитель матрицы, получающейся из матрицы Кирхгофа вычеркиванием двух строк и двух столбцов .
  • Существует алгоритм восстановления матрицы Кирхгофа по матрице сопротивлений .
  • 0 является собственным значением матрицы (соответствующий собственный вектор — все единицы), кратность его равна числу связных компонент графа.
  • Остальные собственные значения положительны. Второе по малости значение Фидлер назвал индексом связности графа, соответствующий собственный вектор — вектор Фидлера (не путать с индексом связности графа Рандича).

См. также

Эта страница в последний раз была отредактирована 8 апреля 2024 в 20:26.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).