Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Магнон
Состав: Квазичастица
Семья: Бозон
Теоретически обоснована: 1930 г. Феликсом Блохом
Масса 0 МэВ/c2 (теоретически)
Время жизни: ∞ (теоретически)
          Квантовые0числа:
Электрический заряд: 0
Спин: 1 ħ

Магно́н — квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. В кристаллах с несколькими магнитными подрешётками (например, антиферромагнетиках) могут существовать несколько сортов магнонов, имеющих различные энергетические спектры. Магноны подчиняются статистике Бозе — Эйнштейна. Магноны взаимодействуют друг с другом и с другими квазичастицами. Существование магнонов подтверждается экспериментами по рассеянию нейтронов, электронов и света, которое сопровождается рождением или уничтожением магнона[источник не указан 2070 дней].

Краткая история

Концепция магнона была введена в 1930 г. Феликсом Блохом[1] для количественного объяснения феномена уменьшения спонтанной намагниченности[en] в ферромагнетиках. При температуре абсолютного нуля ферромагнетик достигает состояния наименьшей энергии, в котором атомные спины (а также и магнитные моменты) выстраиваются в одном направлении. По мере повышения температуры спины начинают отклоняться от общего направления, тем самым увеличивая внутреннюю энергию и уменьшая полную намагниченность. Если представить идеально намагниченный ферромагнетик как вакуумное состояние[en]*, то состояние при низких температурах, в котором идеальный порядок нарушен небольшим количеством перевёрнутых спинов, можно представить как газ из квазичастиц — магнонов. Каждый магнон уменьшает количество правильно выстроенных спинов на и полный магнитный момент вдоль оси квантования — на , где  — это гиромагнитное отношение.

Количественная теория магнонов (квантованных спиновых волн) получила дальнейшее развитие в работах Тэда Хольстена[en], Генри Примакова[2] и Фримена Дайсона[3]. Используя модель вторичного квантования, они показали, что магноны ведут себя как слабо взаимодействующие квазичастицы, подчиняющиеся законам Бозе — Эйнштейна. Подробное описание теории магнонов можно найти в учебнике Чарльза Киттеля по физике твёрдого тела[4] или в ранней обзорной статье Ван Кранендонка и Ван Флека [5].

Непосредственное доказательство существования магнонов было найдено в 1957 г. Бертрамом Брокхаузом, который продемонстрировал неупругое рассеивание нейтронов на магнонах в ферритах[6]. Существование магнонов было продемонстрировано в ферромагнетиках, ферримагнетиках и антиферромагнетиках.

Эксперименты с антиферромагнетиками в сильных магнитных полях продемонстрировали, что магноны действительно подчиняются статистике Бозе — Эйнштейна. Бозе-эйнштейновская конденсация магнонов в антиферромагнетике при низких температурах была доказана Никуни и др.[7], а в ферримагнетике при комнатной температуре Демокритовым и др.[8].


См. также

Литература

  • Kittel C. Introduction to Solid State Physics. — 1953 (1st ed.), 2005 (8th ed.). — ISBN 0-471-41526-X.
    • Русский перевод: Киттель Ч. Элементарная физика твёрдого тела. — М.: Наука, 1965.
    • Русский перевод: Киттель Ч. Введение в физику твёрдого тела. — М.: Наука, 1978.
  • P. Schewe and B. Stein, Physics News Update 746, 2 (2005). online Архивная копия от 10 апреля 2013 на Wayback Machine

Источники

  1. Bloch, F. (1930). “Zur Theorie des Ferromagnetismus”. Zeitschrift für Physik [нем.]. 61 (3—4): 206—219. Bibcode:1930ZPhy...61..206B. DOI:10.1007/BF01339661. ISSN 0044-3328.
  2. Holstein, T.; Primakoff, H. (1940). “Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet”. Physical Review. 58 (12): 1098—1113. DOI:10.1103/PhysRev.58.1098. ISSN 0031-899X.
  3. Dyson, Freeman J. (1956). “General Theory of Spin-Wave Interactions”. Physical Review. 102 (5): 1217—1230. DOI:10.1103/PhysRev.102.1217. ISSN 0031-899X.
  4. C. Kittel, Introduction to Solid State Physics, 7th edition (Wiley, 1995). ISBN 0-471-11181-3
  5. Kranendonk, J. Van; Vleck, J. H. Van (1958). “Spin Waves”. Rev. Mod. Phys. 30 (1): 1—23. Bibcode:1958RvMP...30....1V. DOI:10.1103/RevModPhys.30.1.
  6. Brockhouse, B. N. (1957). “Scattering of Neutrons by Spin Waves in Magnetite”. Phys. Rev. 106 (5): 859—864. Bibcode:1957PhRv..106..859B. DOI:10.1103/PhysRev.106.859.
  7. Nikuni, T.; Oshikawa, M.; Oosawa, A.; Tanaka, H. (1999). “Bose-Einstein Condensation of Dilute Magnons in TlCuCl3”. Phys. Rev. Lett. 84 (25): 5868—5871. arXiv:cond-mat/9908118. Bibcode:2000PhRvL..84.5868N. DOI:10.1103/PhysRevLett.84.5868. PMID 10991075.
  8. Demokritov, S. O.; Demidov, V. E.; Dzyapko, O.; Melkov, G. A.; Serga, A. A.; Hillebrands, B.; Slavin, A. N. (28 September 2006). “Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”. Nature. 443 (7110): 430—433. Bibcode:2006Natur.443..430D. DOI:10.1038/nature05117. PMID 17006509.
  • Большая советская энциклопедия.
  • Ахиезер А. И., Барьяхтар В. Г., Пелетминский С. В. Спиновые волны. — М., 1967.
Эта страница в последний раз была отредактирована 10 февраля 2022 в 19:22.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).