Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Логнормальное распределение

Из Википедии — свободной энциклопедии

Логнормальное
График плотности

μ=0Плотность вероятности
График функции распределения

μ=0Функция распределения
Обозначение ,
Параметры
Носитель
Плотность вероятности
Функция распределения
Математическое ожидание
Медиана
Мода
Дисперсия
Коэффициент асимметрии
Коэффициент эксцесса
Дифференциальная энтропия
Производящая функция моментов
Характеристическая функция

Логнорма́льное распределе́ние в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений. Если случайная величина имеет логнормальное распределение, то её логарифм имеет нормальное распределение.

Определение

Пусть распределение случайной величины задаётся плотностью вероятности, имеющей вид:

где . Тогда говорят, что имеет логнормальное распределение с параметрами и . Пишут: .

Моменты

Формула для -го момента логнормальной случайной величины имеет вид:

откуда в частности:

,
.

Любые нецентральные моменты n-мерного совместного логнормального распределения могут быть вычислены по простой формуле:

, где и  — параметры многомерного совместного распределения.  — вектор, компоненты которого задают порядок момента. (Например, в двухмерном случае,  — второй нецентральный момент первой компоненты,  — смешанный второй момент). Круглые скобки обозначают скалярное произведение.

Свойства логнормального распределения

  • Если  — независимые логнормальные случайные величины, такие что , то их произведение также логнормально:
    .

Связь с другими распределениями

  • Если , то .

И наоборот, если , то .

Моделирование логнормальных случайных величин

Для моделирования обычно используется связь с нормальным распределением. Поэтому, достаточно сгенерировать нормально распределённую случайную величину, например, используя преобразование Бокса — Мюллера, и вычислить её экспоненту.

Вариации обобщение

Логнормальное распределение является частным случаем так называемого распределения Кэптейна[источник не указан 1886 дней].

Приложения

Логнормальное распределение удовлетворительно описывает распределение частот частиц по их размерам при случайном дроблении, например, градин в граде и т. д. Однако здесь есть исключения, например, размер астероидов в солнечной системе имеет логарифмическое распределение[источник не указан 1886 дней].

Литература

  • Crow, Edwin L. & Shimizu, Kunio (Editors) (1988), Lognormal Distributions, Theory and Applications, vol. 88, Statistics: Textbooks and Monographs, New York: Marcel Dekker, Inc., с. xvi+387, ISBN 0-8247-7803-0 
  • Aitchison, J. and Brown, J.A.C. (1957) The Lognormal Distribution, Cambridge University Press.
  • Limpert, E; Stahel, W; Abbt, M. Lognormal distributions across the sciences: keys and clues (англ.) // BioScience (англ.) : journal. — 2001. — Vol. 51, no. 5. — P. 341—352. — doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.
  • Eric W. Weisstein et al. Log Normal Distribution at MathWorld. Electronic document, retrieved October 26, 2006.
  • Holgate, P. The lognormal characteristic function (неопр.) // Communications in Statistics - Theory and Methods. — 1989. — Т. 18, № 12. — С. 4539—4548. — doi:10.1080/03610928908830173.
  • Brooks, Robert; Corson, Jon; Donal, Wales (англ.). The Pricing of Index Options When the Underlying Assets All Follow a Lognormal Diffusion (англ.) // Advances in Futures and Options Research : journal. — 1994. — Vol. 7.
Эта страница в последний раз была отредактирована 23 мая 2021 в 09:53.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).