Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Линейно упорядоченное множество

Из Википедии — свободной энциклопедии

Лине́йно упоря́доченное мно́жество (цепь) ― частично упорядоченное множество, в котором любая пара элементов сравнима, то есть для любых двух элементов и имеет место или .

Одно из центральных понятий в теории порядков; играет важную роль в общей алгебре, в частности, особо изучаются упорядоченные группы, упорядоченные кольца, упорядоченные поля. Важнейший частный случай линейно упорядоченных множеств ― вполне упорядоченные множества.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    2 742
    743
    459
  • Упорядоченные множества, перестановки
  • Упорядоченные пары
  • Лекция 4 | Линейное программирование | Максим Бабенко | Лекториум

Субтитры

Связанные определения

Сечением линейно упорядоченного множества называется разбиение его на два подмножества и так, что , и для любых и : . Классы и называются соответственно нижним и верхним классами сечения.

Различаются следующие типы сечений:

  • скачок ― в нижнем классе имеется наибольший элемент, а в верхнем ― наименьший;
  • дедекиндово сечение ― в верхнем классе нет наименьшего элемента или в нижнем классе нет наибольшего, но не одновременно;
  • щель ― в нижнем классе нет наибольшего элемента, а в верхнем ― наименьшего.

Линейно упорядоченное множество называется непрерывным, если все его сечения дедекиндовы.

Подмножество линейно упорядоченного множества называется плотным, если каждый неодноэлементный интервал множества содержит элементы, принадлежащие .

Свойства

Подмножество линейно упорядоченного множества само является линейно упорядоченным.

Всякий максимальный (минимальный) элемент линейно упорядоченного множества оказывается наибольшим (наименьшим).[1]

Линейно упорядоченное множество вещественных чисел может быть охарактеризовано как непрерывное линейно упорядоченное множество, в котором нет ни наибольшего, ни наименьшего элементов, но содержится счётное плотное подмножество.

Всякое счётное линейно упорядоченное множество изоморфно некоторому подмножеству отрезка с порядком, унаследованным от .

Решётка изоморфна подмножеству линейно упорядоченного множества целых чисел тогда и только тогда, когда каждая её подрешетка является ретрактом.

Примечания

Эта страница в последний раз была отредактирована 15 ноября 2021 в 09:31.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).