Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Линейная независимость

Из Википедии — свободной энциклопедии

Линейно независимые векторы в R3
Линейно независимые векторы в R3
Линейно зависимые векторы на плоскости в R3
Линейно зависимые векторы на плоскости в R3

В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.

Пример

В векторы , и линейно независимы, так как уравнение

имеет только одно — тривиальное — решение.

Векторы и являются линейно зависимыми, так как

а, значит,

Определение

Пусть будет линейное пространство над полем и . называется линейно независимым множеством, если любое его конечное подмножество является линейно независимым.

Конечное множество называется линейно независимым, если единственная линейная комбинация, равная нулю, тривиальна, то есть все её коэффициенты равны нулю:

Если существует такая линейная комбинация с минимум одним , называется линейно зависимым. Обратите внимание, что в первом равенстве подразумевается , а во втором .

Свойства

  • линейно зависимо.
  • линейно независимо линейно независимо для всех .
  • линейно зависимо линейно зависимо для всех .

Применение

Линейные системы уравнений

Линейная система уравнений, где  — количество переменных, имеет однозначное решение тогда и только тогда, когда столбцы её основной матрицы являются линейно независимыми.

Ранг матриц

Ранг матрицы равен максимальному числу её линейно независимых строк или столбцов.

Геометрический смысл
Базис

Базис линейного пространства является максимальным множеством линейно независимых векторов (максимальность понимается в том смысле, что при добавлении к этому множеству любого вектора этого пространства новое множество уже не будет линейной независимым).

См. также

Эта страница в последний раз была отредактирована 28 ноября 2021 в 00:04.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).