Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Чётное число вершин (четыре: 2, 4, 5 и 6) данного графа имеют нечётную степень. Сумма степеней всех вершин равна 14, то есть удвоенному числу рёбер графа.

Лемма о рукопожатиях — положение теории графов, согласно которому любой конечный неориентированный граф имеет чётное число вершин нечётных степеней. Название происходит от известной математической задачи: необходимо доказать, что в любой группе число людей, пожавших руку нечётному числу других людей, чётно.

Лемма является следствием формулы суммы степеней, также иногда называемой леммой о рукопожатиях:

для графа с множеством вершин и множеством рёбер . Оба результата доказаны Эйлером в докладе о семи мостах Кёнигсберга (1736), положившем начало исследованиям в области теории графов.

Вершины нечётных степеней графа иногда называются нечётными вершинами или нечётными узлами; используя эту терминологию, можно перефразировать лемму таким образом: каждый граф имеет чётное число нечётных вершин.

Формула суммы степеней подразумевает, что -регулярный граф с числом вершин имеет рёбер[1]; в частности, если нечётно, число рёбер должно делиться на .

Лемма неприменима к бесконечным графам, даже если они имеют конечное число нечётных вершин. Например, бесконечный путь с одной концевой вершиной имеет единственную нечётную вершину (то есть, нечётное количество).

Лемма использована в одном из доказательств леммы Шпернера, а также «задачи о восхождении на гору».

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    8 864
    1 200
    354
  • Графы. Лемма о рукопожатии и др.
  • Графы | Степень вершины | Лемма о рукопожатиях | Компоненты связности
  • 0304.Лемма о сэндвиче

Субтитры

Доказательство

При доказательстве формулы степеней Эйлер использовал технику двойного (повторного) счёта: посчитал количество инцидентных пар , где  — ребро и  — одна из его концевых вершин двумя разными способами. При добавлении ребра сумма степеней вершин графа увеличивается на 2, то есть вершина принадлежит парам, где  — степень вершины (количество инцидентных ей рёбер). Следовательно, число инцидентных пар совпадает с суммой всех степеней. Однако каждое ребро принадлежит двум инцидентным парам, так как имеет две концевые вершины. Поэтому число инцидентных пар равно . Поскольку две данные формулы предназначены для одного и то же множества, их значения одинаковы.

Чётность или нечётность суммы целых чисел не зависит от количества чётных слагаемых. Сумма чётна, если число нечётных слагаемых чётно (и нечётна в противном случае). Так как одна часть уравнения всегда чётна , другая часть должна содержать чётное число нечётных слагаемых, то есть вершин нечётной степени.

Примечания

  1. Олдес, Джоан M. & Уилсон, Робин Дж. (2000), Theorem 2.2, Graphs and Applications: an Introductory Approach, Undergraduate Mathematics Series, The Open University, Springer-Verlag, с. 44, ISBN 978-1-85233-259-4 

Литература

Эта страница в последний раз была отредактирована 24 сентября 2023 в 17:54.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).