Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Кратный интеграл Римана

Из Википедии — свободной энциклопедии

Примечание: всюду в данной статье, где используется знак имеется в виду (кратный) интеграл Римана , если не оговорено обратное;
всюду в данной статье, где говорится об измеримости множества, имеется в виду измеримость по Жордану, если не оговорено обратное.

Определение

Пусть - измеримое (по Жордану) множество. Разбиение множества - это любой набор измеримых множеств, пересекающихся лишь по границам и . Выберем точки - получили - разбиение с отмеченными точками.

Пусть функция определена на , тогда интегральной суммой называется .

Функция интегрируема по Риману в кратном смысле на и - её интеграл, если : для любого отмеченного разбиения с и диаметром выполняется неравенство . Обозначается интеграл от функции на измеримом множестве : .

Некоторые свойства кратного интеграла Римана

  1. Если функция интегрируема по Риману на измеримом множестве , то , что функция ограничена на множестве , где - внутренность . (См. Связь интегрируемости по Риману и ограниченности).
  2. Если функция интегрируема по Риману на измеримом множестве , функция определена на и на для некоторого , то интегрируема по Риману на и .
  3. Линейность. Если (ограничена и интегрируема по Риману на ), то функция и . Если , то и . Следует из свойств интеграла как предела по базе.
  4. Аддитивность по множествам. Если и , то и, если , то . Первая часть следует из критерия Лебега.
  5. Интегрируемость по подмножеству. Если , - измеримое по Жордану подмножество , то . Следует из критерия Лебега.
  6. Если , то . Следует из критерия Лебега.
  7. Если , функция непрерывна на отрезке . Следует из критерия Лебега.
  8. Если , и изменить на множестве , то измененная функция , при условии её ограниченности на , также интегрируема по Риману на и .
  9. Если и на , то . Следует из свойств интеграла как предела по базе.
  10. Если , то и .
  11. Если , на и - внутренняя точка и точка непрерывности , то .

Теоремы

Ограниченная функция на измеримом множестве интегрируема по Риману , и в случае равенства: , где и - соответственно нижний и верхний интегралы Дарбу.

  • Критерий интегрируемости Лебега.

Ограниченная на измеримом множестве интегрируема по Риману непрерывна почти всюду на .

  • Теоремы о связи интеграла Римана и меры Жордана.
    • Теорема 1. Пусть - измеримое множество в . Тогда измеримость по Жордану множества характеристическая функция интегрируема по Риману на , и в случае измеримости выполняется равенство: .
    • Теорема 2. Пусть - измеримое множество в , функция на . Пусть множество . Тогда интегрируемость по Риману ограниченной функции на множестве множество измеримо по Жордану в . При этом в случае измеримости выполняется равенство: .
    • Следствие. Ограниченная на измеримом множестве функция интегрируема по Риману на множества и измеримы по Жордану в . И в случае их измеримости выполняется равенство: .
  • Теоремы о сведении кратных интегралов Римана в повторным.
    • Теорема. Пусть функция , где - брус, являющийся произведением промежутков: . Пусть , для каждого , обозначим через и нижний и верхний интегралы Дарбу от по на . Тогда и интегрируемы по Риману на и .
    • Следствие 1. Пусть , где - брус, являющийся произведением промежутков: . Пусть , такая функция на , что , где и - соответственно нижний и верхний интегралы Дарбу от при фиксированном по на . Тогда функция интегрируема по Риману на и .
    • Следствие 2. Пусть , где - брус, являющийся произведением промежутков: . Если , функция интегрируема по Риману на , то её интеграл интегрируем по Риману на и
    • Следствие 3. Пусть . Обозначим через - проекцию множества на что . Для обозначим через - сечение множества . Предположим, что и все - измеримые по Жордану множества в и соответственно, причём для каждого функция . Тогда интегрируем на и .

См. также

Эта страница в последний раз была отредактирована 28 мая 2023 в 10:06.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).