Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Конформно-евклидова модель

Из Википедии — свободной энциклопедии

Замощение плоскости Лобачевского правильными треугольниками.

Конформно-евклидова модель или модель Пуанкаре́ — модель пространства Лобачевского.

Существуют разновидности модели — в круге (стереографическая проекция) и на полуплоскости для планиметрии Лобачевского, а также в шаре и в полупространстве — для стереометрии Лобачевского, соответственно.

Конформно-евклидова модель примечательна тем, что в ней углы изображаются обычными углами, то есть эта модель конформна[1] в отличие от проективной модели, в которой определение углов производится гораздо сложнее.

История

Эта модель была предложена Эудженио Бельтрами, наряду с проективной моделью и моделью псевдосферы.[2] Метрика в конформно-евклидовой модели приводится также в знаменитой лекции Римана «О гипотезах, лежащих в основании геометрии», но связь с геометрией Лобачевского обнаружена именно Бельтрами. Впоследствии Анри Пуанкаре обнаружил связи этой модели с задачами теории функций комплексного переменного, что дало одно из первых серьёзных приложений геометрии Лобачевского.

Модели в круге и в шаре

Конформно-евклидова модель в круге.

За плоскость Лобачевского принимается внутренность круга (изображено на иллюстрации) в евклидовом пространстве; граница данного круга (окружность) называется «абсолютом». Роль геодезических прямых выполняют содержащиеся в этом круге дуги окружностей , перпендикулярных абсолюту, и его диаметры; роль движений — преобразования, получаемые комбинациями инверсий относительно окружностей, дуги которых служат прямыми.

Метрикой плоскости Лобачевского в Конформно-евклидовой модели в единичном круге является:

где и  — оси абсцисс и ординат, соответственно[3].

Аналогично, для конформно-евклидовой модели в шаре роль абсолюта выполняет граничная сфера в трёхмерном евклидовом пространстве, а пространством Лобачевского является внутренность шара.

Расстояния

В комплексных координатах на единичном круге расстояния можно вычислить с помощью следующей формулы:

Расстояние можно выразить через двойное отношение. Если на дуге , точки расположены в следующем порядке: , , , то расстояние между точками и , в геометрии Лобачевского равняется

.

Модели на полуплоскости и в полупространстве

В модели полуплоскости Пуанкаре за плоскость Лобачевского принимается верхняя полуплоскость. Прямая, ограничивающая полуплоскость (то есть ось абсцисс), называется «абсолютом». Роль прямых выполняют содержащиеся в этой полуплоскости полуокружности с центрами на абсолюте и начинающиеся на абсолюте перпендикулярные ему лучи (то есть вертикальные лучи). Роль движений — преобразования, получаемые композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту.

Метрика плоскости Лобачевского в конформно-евклидовой модели в верхней полуплоскости имеет вид: [3], где и  — прямоугольные координаты, соответственно параллельно и перпендикулярно абсолюту.

Соответственно, в конформно-евклидовой модели в полупространстве роль абсолюта выполняет плоскость в трёхмерном евклидовом пространстве, а пространством Лобачевского является лежащее на этой плоскости полупространство.

См. также

Примечания

  1. Попов А. Г. Псевдосферические поверхности и некоторые задачи математической физики. Дата обращения: 24 июля 2007. Архивировано 20 марта 2022 года.
  2. Eugenio Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali. di Mat., ser II, 2 (1868), 232—255.
    перевод: Бельтрами Э. Основы теории пространств постоянной кривизны. // Об основаниях геометрии : Сборник. — М.: ГИТТЛ, 1956. — С. 342—365.
  3. 1 2 Буяло С. В. Курс лекций «Асимптотическая геометрия метрических пространств» весна 2004.

Литература

Эта страница в последний раз была отредактирована 9 августа 2023 в 15:40.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).