Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Контактная структура

Из Википедии — свободной энциклопедии

Контактная структура — структура на гладком многообразии нечётной размерности , состоящая из гладкого поля касательных гиперплоскостей, удовлетворяющих формулируемому ниже условию невырожденности. Такая структура всегда существует на многообразии контактных элементов многообразия. Контактная структура тесно связана с симплектической и является её аналогом для нечётномерных многообразий.

Определение

Контактная структура на многообразии определяется заданием такой 1-формы , что

называется контактной формой. Контактная структура существует только на ориентируемом многообразии и определяет единственное векторное поле на такое, что

для любого векторного поля .

Свойства

  • Размерность контактного многообразия всегда нечётна.
  • На любом подмногообразии уровня гамильтониана, заданного на фазовом пространстве, возникает естественная контактная структура.
  • С каждым симплектическим 2n-мерным многообразием каноническим образом связано (2n+1)-мерное контактное многообразие, называемое его контактизацией.
    • Обратно, для любого (2n+1)-мерного контактного многообразия существует его симплектизация, являющаяся (2n+2)-мерным многообразием.

Вариации и обобщения

Почти контактная структура

Пусть  — нечётномерное гладкое многообразие .

Почти контактной структурой на многообразии называется тройка тензорных полей на этом многообразии, где  — дифференциальная 1-форма, называемая контактной формой структуры,  — векторное поле, называемое характеристическим,  — эндоморфизм , называемый структурным эндоморфизмом. При этом

Если, кроме того, на фиксирована риманова структура , такая что

четвёрка называется почти контактной метрической (или короче АС-) структурой. Многообразие, на котором задана (почти) контактная [метрическая] структура, называется, соответственно, (почти) контактным [метрическим] многообразием.

Литература

  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М.: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5.
  • Арнольд В. И., Гивенталь А. Б. Симплектическая геометрия.
Эта страница в последний раз была отредактирована 24 октября 2021 в 00:35.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).