Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Конечное множество — множество, равномощное отрезку натурального ряда, а также пустое множество, называется конечным. В противном случае множество называется бесконечным. Например,

конечное множество из пяти элементов. Число элементов конечного множества является натуральным числом и называется мощностью множества. Множество натуральных чисел бесконечно:

Конечные множества играют особую роль в комбинаторике, которая изучает дискретные объекты. Рассуждения о конечных множествах используют принцип Дирихле, согласно которому не может существовать инъекция из большего конечного множества в меньшее.

Формальное определение

Два множества и называются эквивалентными, если существует биективное отображение одного множества в другое. Если множества X и Y эквивалентны, то этот факт записывают или и говорят, что множества имеют одинаковые мощности.

Множество называется конечным, если оно эквивалентно множеству при некотором неотрицательном целом . При этом число называется количеством элементов множества , что записывается как .[1]

В частности, пустое множество является конечным множеством, количество элементов которого равно 0, то есть, .

Существуют и другие определения конечного множества:

  • множество конечно, если оно индуктивно;
  • множество конечно, если множество всех его подмножеств нерефлексивно[2];
  • множество конечно, если оно нерефлексивно;
  • множество конечно, если оно не является объединением двух непересекающихся множеств, каждое из которых эквивалентно данному множеству[2].

Проблема определения конечности множеств в общем случае неразрешима (теорема Трахтенброта). Не существует ни самого слабого, ни самого сильного определения конечного множества. Для каждой логической формулы, являющейся определением конечного множества, существует более сильная и более слабая формулы. Существует неограниченное число логических формул, определяющих конечные множества, и среди них неограниченное множество независимых определений.

Свойства

  • Регулярное множество не эквивалентно никакому своему собственному подмножеству;[1]
  • Если конечные множества попарно не пересекаются (то есть, ), то
    ;
  • Если  — конечные множества, то
    ;
  • Если  — конечное множество, то мощность его булеана равна

См. также

Примечания

  1. 1 2 Соболева Т. С., Чечкин А. В. Дискретная математика (неопр.). — Академия, 2006. — ISBN 5-7695-2823-0.
  2. 1 2 Френкель, 1966, с. 87.

Литература

Эта страница в последний раз была отредактирована 14 февраля 2023 в 04:36.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).