Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Классическая логикалогика, системы которой строятся на принципах двузначности (бивалентности) значений ее выражений и формул, взаимозаменяемости (экзистенциальности) выражений и формул, имеющих одинаковые значения, а также допустимости интерпретации нелогических символов, состоящей из требований непустоты области интерпретации и принятия термами значений, только элементов области интерпретации[1].

При этом принцип двузначности состоит в том, что каждое высказывание принимает точно одно из двух значений - «истина» или «ложь». Этот принцип равносилен принципу исключения третьего.

Применительно к правильно построенным формулам принцип двузначности означает следующее:

Всякая формула при допустимой интерпретации нелогических символов, входящих в ее состав, принимает точно одно из двух значений - «истина» или «ложь».

Принцип экзистенциальности означает, что:

Значение сложного выражения полностью определяется значениями составляющих его выражений.

Принцип допустимости интерпретации относится к классической логике предикатов и состоит в требовании непустоты области интерпретации и принятии термами значений из области интерпретации:

Область интерпретации (универсум рассмотрения, предметная область) содержит, по крайней мере, один объект.
Каждый терм должен иметь значение, и это значение должно быть элементом области интерпретации.

Ещё одним требованием к классической логике является требование эпистемологического и онтологического (а не математического) характера, состоящее в классической (корреспондентской) трактовке истинности интерпретации формул, восходящей к трудам Аристотеля:

Высказывание истинно, если и только если то, что в нём утверждается, имеет место в действительности.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    433 377
    17 881
    954
  • Введение в логику, урок 1: Базовые понятия
  • Классическая логика. Элементы математической логики.
  • Определение. Не все слова (понятия, термины) можно определить. Как быть? Классическая логика.

Субтитры

Основные сведения

Каркас классической логики образуют классическая логика высказываний, классическая логика первого порядка, логика предикатов с равенством, логика предикатов высших порядков и традиционная силлогистика[1].

К неклассическим логикам, соответственно, относятся логики, построенные на основе совокупностей принципов, отличающихся от использованных для построения классической логики. К неклассическим, в частности, относятся логики, в которых не применяются один или несколько принципов классической логики. Примером неклассической логики является интуиционистская логика, в которой закон исключения третьего не применяется.

Кроме того существуют некоммутативная логика (отказ от коммутативности конъюнкции и дизъюнкции), линейная логика (отказ от идемпотентности конъюнкции и дизъюнкции), немонотонная логика (отказ от монотонности отношения выводимости), квантовая логика (отказ от дистрибутивности ), и множество других.

Нередко приставку классическая употребляют также по отношению к некоторым неклассическим логикам, которые допускают несколько вариантов — с законом исключения третьего (или подобных ему) и без. Тогда первую называют классической. Например классическая линейная логика.

См.также

Примечания

  1. 1 2 Бочаров В. А., Маркин В. И. Введение в логику. — М.: ИД «ФОРУМ»: ИНФРА-М, 2010. С. 35, 274-277. — 560 с. — ISBN 978-5-8199-0365-0 (ИД «ФОРУМ») ISBN 978-5-16-003360-0 («ИНФРА-М»)
Эта страница в последний раз была отредактирована 6 мая 2022 в 07:30.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).