Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).

Например, фраза «90-й процентиль массы тела у новорожденных мальчиков составляет 4 кг»[1] означает, что 90 % мальчиков рождаются с весом, меньшим либо равным 4 кг, а 10 % мальчиков рождаются с весом, большим 4 кг.

Определение

Рассмотрим вероятностное пространство и  — вероятностная мера, задающая распределение некоторой случайной величины . Пусть фиксировано . Тогда -квантилем (или квантилем уровня ) распределения называется число , такое что

,

В некоторых источниках (например, в англоязычной литературе) -квантилем называется квантиль уровня , то есть -квантиль в предыдущих обозначениях.

Замечания

где  — функция распределения .

  • Очевидно, для непрерывных распределений справедливо следующее широко использующееся при построении доверительных интервалов равенство:
  1. составляем вариационный ряд значений (выборка имеет объём ), а также считаем, что (это необходимо при вычислении 100% квантили по приводимым ниже формулам);
  2. находим величину ;
  3. сравниваем и :
a) если , то полагаем ;
б) если , то полагаем ;
в) если , то полагаем .

Заданный таким образом -квантиль удовлетворяет приведенному выше определению.

В некоторых случаях (при большом объёме выборки и эмпирическом распределении, близком к непрерывному) вместо равенства можно использовать приближённое сравнение (это позволит, например, квантиль уровня 1/3 представлять как 0,33…333 при компьютерной обработке данных).

Медиана и квартили

Квантили нормального распределения
Квантили нормального распределения
  • 0,25-квантиль называется первым (или нижним) кварти́лем (от лат. quarta — четверть);
  • 0,5-квантиль называется медианой (от лат. mediāna — середина) или вторым кварти́лем;
  • 0,75-квантиль называется третьим (или верхним) кварти́лем.

Интеркварти́льным размахом (англ. Interquartile range) называется разность между третьим и первым квартилями, то есть . Интерквартильный размах является характеристикой разброса распределения величины и является робастным аналогом дисперсии. Вместе, медиана и интерквартильный размах могут быть использованы вместо математического ожидания и дисперсии в случае распределений с большими выбросами, либо при невозможности вычисления последних.

Дециль

Деци́ль характеризует распределение величин совокупности, при котором девять значений дециля делят её на десять равных частей. Любая из этих десяти частей составляет 1/10 всей совокупности. Так, первый дециль отделяет 10 % наименьших величин, лежащих ниже дециля, от 90 % наибольших величин, лежащих выше дециля.

Так же, как в случае моды и медианы, у интервального вариационного ряда распределения каждый дециль (и квартиль) принадлежит определённому интервалу и имеет вполне определённое значение[2].

Процентиль

проценти́лем называют квантиль уровня . Соответственно, медиана является 50-м процентилем, а первый и третий квартиль — 25-м и 75-м процентилями соответственно.

В целом, понятия квантиль и процентиль взаимозаменяемы[источник не указан 2784 дня], так же, как и шкалы исчисления вероятностей — абсолютная и процентная.

Процентили также называются перцентилями или центилями.

Квантили стандартного нормального распределения

Вероятность (уровень квантили), % 99,99 99,90 99,00 97,72 97,50 95,00 90,00 84,13 50,00
Квантиль (округлённый до тысячных) 3,719 3,090 2,326 1,999 1,960 1,645 1,282 1,000 0,000

См. также

Примечания

  1. Руководство участкового педиатра. — ГЭОТАР-Медиа, 2008. — С. 44. — 354 с.
  2. Шмойлова Р. А., Минашкин В. Г., Садовникова Н. А. Практикум по теории статистики. — 3-е изд. — М.: Финансы и статистика, 2011. — С. 130—131. — 416 с. — ISBN 9785279032969..

Ссылки

Эта страница в последний раз была отредактирована 8 февраля 2021 в 20:50.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).